These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21255283)

  • 21. Azotobacter vinelandii flavodoxin: purification and properties of the recombinant, dephospho form expressed in Escherichia coli.
    Taylor MF; Boylan MH; Edmondson DE
    Biochemistry; 1990 Jul; 29(29):6911-8. PubMed ID: 2204423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone.
    Liu ST; Lee LY; Tai CY; Hung CH; Chang YS; Wolfram JH; Rogers R; Goldstein AH
    J Bacteriol; 1992 Sep; 174(18):5814-9. PubMed ID: 1325965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyruvate dehydrogenase from Azotobacter vinelandii. Properties of the N-terminally truncated enzyme.
    Hengeveld AF; Schoustra SE; Westphal AH; de Kok A
    Eur J Biochem; 1999 Nov; 265(3):1098-107. PubMed ID: 10518807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The catalytic domain of the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii and Escherichia coli. Expression, purification, properties and preliminary X-ray analysis.
    Schulze E; Westphal AH; Obmolova G; Mattevi A; Hol WG; de Kok A
    Eur J Biochem; 1991 Nov; 201(3):561-8. PubMed ID: 1935951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.
    Isas JM; Yannone SM; Burgess BK
    J Biol Chem; 1995 Sep; 270(36):21258-63. PubMed ID: 7673160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth.
    You M; Fang S; MacDonald J; Xu J; Yuan ZC
    Microbiol Res; 2020 Mar; 233():126395. PubMed ID: 31865096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a
    Mus F; Tseng A; Dixon R; Peters JW
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning of the sth gene from Azotobacter vinelandii and construction of chimeric soluble pyridine nucleotide transhydrogenases.
    Boonstra B; Björklund L; French CE; Wainwright I; Bruce NC
    FEMS Microbiol Lett; 2000 Oct; 191(1):87-93. PubMed ID: 11004404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia.
    Babu-Khan S; Yeo TC; Martin WL; Duron MR; Rogers RD; Goldstein AH
    Appl Environ Microbiol; 1995 Mar; 61(3):972-8. PubMed ID: 7540821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of chimeric isocitrate dehydrogenases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a psychrophilic bacterium, Colwellia maris.
    Yoneta M; Sahara T; Nitta K; Takada Y
    Curr Microbiol; 2004 May; 48(5):383-8. PubMed ID: 15060737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-directed mutagenesis of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Binding of the peripheral components E1p and E3.
    Schulze E; Westphal AH; Boumans H; de Kok A
    Eur J Biochem; 1991 Dec; 202(3):841-8. PubMed ID: 1765097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases.
    Goldstein A; Lester T; Brown J
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):266-71. PubMed ID: 12686144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter vinelandii. Evidence that up-regulation during N2 fixation is independent of nifA but dependent on ntrA.
    Moshiri F; Smith EG; Taormino JP; Maier RJ
    J Biol Chem; 1991 Dec; 266(34):23169-74. PubMed ID: 1660468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics and specificity of reductive acylation of wild-type and mutated lipoyl domains of 2-oxo-acid dehydrogenase complexes from Azotobacter vinelandii.
    Berg A; Westphal AH; Bosma HJ; de Kok A
    Eur J Biochem; 1998 Feb; 252(1):45-50. PubMed ID: 9523710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase.
    Sashidhar B; Podile AR
    J Appl Microbiol; 2010 Jul; 109(1):1-12. PubMed ID: 20070432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii.
    Ramos F; Blanco G; Gutiérrez JC; Luque F; Tortolero M
    Mol Microbiol; 1993 Jun; 8(6):1145-53. PubMed ID: 8361359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new Azotobacter vinelandii mannuronan C-5-epimerase gene (algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa.
    Rehm BH; Ertesvåg H; Valla S
    J Bacteriol; 1996 Oct; 178(20):5884-9. PubMed ID: 8830682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli.
    Ben Farhat M; Fourati A; Chouayekh H
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1738-50. PubMed ID: 23737304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly.
    Lu C; Stricker J; Erickson HP
    Cell Motil Cytoskeleton; 1998; 40(1):71-86. PubMed ID: 9605973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability.
    Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A
    Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.