These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21255327)

  • 1. What heat is telling us about microbial conversions in nature and technology: from chip- to megacalorimetry.
    Maskow T; Kemp R; Buchholz F; Schubert T; Kiesel B; Harms H
    Microb Biotechnol; 2010 May; 3(3):269-84. PubMed ID: 21255327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentials and limitations of miniaturized calorimeters for bioprocess monitoring.
    Maskow T; Schubert T; Wolf A; Buchholz F; Regestein L; Buechs J; Mertens F; Harms H; Lerchner J
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):55-66. PubMed ID: 21808971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized calorimetry - a new method for real-time biofilm activity analysis.
    Lerchner J; Wolf A; Buchholz F; Mertens F; Neu TR; Harms H; Maskow T
    J Microbiol Methods; 2008 Aug; 74(2-3):74-81. PubMed ID: 18502524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chip calorimetry for the monitoring of whole cell biotransformation.
    Maskow T; Lerchner J; Peitzsch M; Harms H; Wolf G
    J Biotechnol; 2006 Apr; 122(4):431-42. PubMed ID: 16309773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalorimetric assays for measuring cell growth and metabolic activity: methodology and applications.
    Braissant O; Bachmann A; Bonkat G
    Methods; 2015 Apr; 76():27-34. PubMed ID: 25461776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions.
    Robador A; LaRowe DE; Finkel SE; Amend JP; Nealson KH
    Front Microbiol; 2018; 9():109. PubMed ID: 29449836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What does calorimetry and thermodynamics of living cells tell us?
    Maskow T; Paufler S
    Methods; 2015 Apr; 76():3-10. PubMed ID: 25461814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodological aspects of microcalorimetry used to assess the dynamics of microbial activity during composting.
    Medina S; Raviv M; Saadi I; Laor Y
    Bioresour Technol; 2009 Oct; 100(20):4814-20. PubMed ID: 19525109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isothermal titration calorimetry - a new method for the quantification of microbial degradation of trace pollutants.
    Mariana F; Buchholz F; Harms H; Yong Z; Yao J; Maskow T
    J Microbiol Methods; 2010 Jul; 82(1):42-8. PubMed ID: 20385177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chip-calorimetric monitoring of biofilm eradication with antibiotics provides mechanistic information.
    Mariana F; Buchholz F; Lerchner J; Neu TR; Harms H; Maskow T
    Int J Med Microbiol; 2013 Apr; 303(3):158-65. PubMed ID: 23453494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the specific rate of catabolic activity (Ac) from the heat flow rate of soil microbial reactions measured by calorimetry: significance and applications.
    Barros N; Gallego M; Feijóo S
    Chem Biodivers; 2004 Oct; 1(10):1560-8. PubMed ID: 17191799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct determination of anaerobe contributions to the energy metabolism of Trypanosoma cruzi by chip calorimetry.
    Lerchner J; Sartori MR; Volpe POL; Lander N; Mertens F; Vercesi AE
    Anal Bioanal Chem; 2019 Jul; 411(17):3763-3768. PubMed ID: 31093698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorimetric Heat Dissipation Measurements of Developing Zebrafish Embryos.
    Rodenfels J; Neugebauer KM
    Methods Mol Biol; 2021; 2329():311-321. PubMed ID: 34085232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chip calorimetry for evaluation of biofilm treatment with biocides, antibiotics, and biological agents.
    Morais FM; Buchholz F; Maskow T
    Methods Mol Biol; 2014; 1147():267-75. PubMed ID: 24664840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.
    van Schie MMCH; Ebrahimi KH; Hagen WR; Hagedoorn PL
    Anal Biochem; 2018 Mar; 544():57-63. PubMed ID: 29273238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of growth of Aspergillus tamarii in a biological real-time reaction calorimeter.
    Dhandapani B; Mahadevan S; Mandal AB
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):1927-36. PubMed ID: 22113563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of calorimetric measurements for biokinetic characterisation of nitrifying population in activated sludge.
    Daverio E; Aulenta F; Ligthart J; Bassani C; Rozzi A
    Water Res; 2003 Jun; 37(11):2723-31. PubMed ID: 12753850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chip-calorimetric approach to the analysis of Ag nanoparticle caused inhibition and inactivation of beads-grown bacterial biofilms.
    Hartmann T; Mühling M; Wolf A; Mariana F; Maskow T; Mertens F; Neu TR; Lerchner J
    J Microbiol Methods; 2013 Nov; 95(2):129-37. PubMed ID: 23968644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric real time monitoring of lambda prophage induction.
    Maskow T; Kiesel B; Schubert T; Yong Z; Harms H; Yao J
    J Virol Methods; 2010 Sep; 168(1-2):126-32. PubMed ID: 20470826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of isothermal microcalorimetry to monitor microbial activities.
    Braissant O; Wirz D; Göpfert B; Daniels AU
    FEMS Microbiol Lett; 2010 Feb; 303(1):1-8. PubMed ID: 19895644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.