BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21255391)

  • 1. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): Implications for the evolution of gastrulation.
    Kumburegama S; Wijesena N; Xu R; Wikramanayake AH
    Evodevo; 2011 Jan; 2(1):2. PubMed ID: 21255391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella.
    Wijesena N; Sun H; Kumburegama S; Wikramanayake AH
    Dev Biol; 2022 Jan; 481():215-225. PubMed ID: 34767794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic BMP-cWNT signaling in the cnidarian
    Wijesena N; Simmons DK; Martindale MQ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5608-E5615. PubMed ID: 28652368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryonic development of the moon jellyfish
    Kraus Y; Osadchenko B; Kosevich I
    PeerJ; 2022; 10():e13361. PubMed ID: 35607447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled.
    Lee PN; Kumburegama S; Marlow HQ; Martindale MQ; Wikramanayake AH
    Dev Biol; 2007 Oct; 310(1):169-86. PubMed ID: 17716645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression.
    Magie CR; Daly M; Martindale MQ
    Dev Biol; 2007 May; 305(2):483-97. PubMed ID: 17397821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis.
    Marlow H; Matus DQ; Martindale MQ
    Dev Biol; 2013 Aug; 380(2):324-34. PubMed ID: 23722001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cnidarian and the canon: the role of Wnt/beta-catenin signaling in the evolution of metazoan embryos.
    Primus A; Freeman G
    Bioessays; 2004 May; 26(5):474-8. PubMed ID: 15112227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell shape changes during larval body plan development in Clytia hemisphaerica.
    Kraus Y; Chevalier S; Houliston E
    Dev Biol; 2020 Dec; 468(1-2):59-79. PubMed ID: 32976840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians.
    Technau U
    Mech Dev; 2020 Sep; 163():103628. PubMed ID: 32603823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification.
    Zhang T; Guo X; Chen Y
    PLoS One; 2013; 8(5):e65058. PubMed ID: 23741453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation.
    Wikramanayake AH; Hong M; Lee PN; Pang K; Byrum CA; Bince JM; Xu R; Martindale MQ
    Nature; 2003 Nov; 426(6965):446-50. PubMed ID: 14647383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian.
    Lapébie P; Ruggiero A; Barreau C; Chevalier S; Chang P; Dru P; Houliston E; Momose T
    PLoS Genet; 2014 Sep; 10(9):e1004590. PubMed ID: 25233086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering.
    Tamulonis C; Postma M; Marlow HQ; Magie CR; de Jong J; Kaandorp J
    Dev Biol; 2011 Mar; 351(1):217-28. PubMed ID: 20977902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascidian gastrulation and blebbing activity of isolated endoderm blastomeres.
    Nishida HY; Hamada K; Koshita M; Ohta Y; Nishida H
    Dev Biol; 2023 Apr; 496():24-35. PubMed ID: 36702215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study.
    Kraus Y; Technau U
    Dev Genes Evol; 2006 Mar; 216(3):119-32. PubMed ID: 16416137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
    Martik ML; McClay DR
    Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis.
    Keller RE
    J Exp Zool; 1981 Apr; 216(1):81-101. PubMed ID: 7288390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.