BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21255428)

  • 21. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa.
    Goodarzi AA; Jeggo PA
    Int J Mol Sci; 2012; 13(9):11844-11860. PubMed ID: 23109886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing.
    Rath A; Hromas R; De Benedetti A
    BMC Mol Biol; 2014 Mar; 15():6. PubMed ID: 24655462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A.
    Janssen A; Colmenares SU; Lee T; Karpen GH
    Genes Dev; 2019 Jan; 33(1-2):103-115. PubMed ID: 30578303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1.
    Canfield C; Rains J; De Benedetti A
    BMC Mol Biol; 2009 Dec; 10():110. PubMed ID: 20021694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trimming of damaged 3' overhangs of DNA double-strand breaks by the Metnase and Artemis endonucleases.
    Mohapatra S; Yannone SM; Lee SH; Hromas RA; Akopiants K; Menon V; Ramsden DA; Povirk LF
    DNA Repair (Amst); 2013 Jun; 12(6):422-32. PubMed ID: 23602515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair.
    Zhu S; Paydar M; Wang F; Li Y; Wang L; Barrette B; Bessho T; Kwok BH; Peng A
    Elife; 2020 Jan; 9():. PubMed ID: 31951198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends.
    Drouet J; Frit P; Delteil C; de Villartay JP; Salles B; Calsou P
    J Biol Chem; 2006 Sep; 281(38):27784-93. PubMed ID: 16857680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical evidence for Ku-independent backup pathways of NHEJ.
    Wang H; Perrault AR; Takeda Y; Qin W; Wang H; Iliakis G
    Nucleic Acids Res; 2003 Sep; 31(18):5377-88. PubMed ID: 12954774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci.
    Riballo E; Kühne M; Rief N; Doherty A; Smith GC; Recio MJ; Reis C; Dahm K; Fricke A; Krempler A; Parker AR; Jackson SP; Gennery A; Jeggo PA; Löbrich M
    Mol Cell; 2004 Dec; 16(5):715-24. PubMed ID: 15574327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells.
    Golding SE; Rosenberg E; Khalil A; McEwen A; Holmes M; Neill S; Povirk LF; Valerie K
    J Biol Chem; 2004 Apr; 279(15):15402-10. PubMed ID: 14744854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events.
    Kramer KM; Brock JA; Bloom K; Moore JK; Haber JE
    Mol Cell Biol; 1994 Feb; 14(2):1293-301. PubMed ID: 8289808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-PK autophosphorylation facilitates Artemis endonuclease activity.
    Goodarzi AA; Yu Y; Riballo E; Douglas P; Walker SA; Ye R; Härer C; Marchetti C; Morrice N; Jeggo PA; Lees-Miller SP
    EMBO J; 2006 Aug; 25(16):3880-9. PubMed ID: 16874298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functions and regulation of human artemis in double strand break repair.
    Dahm K
    J Cell Biochem; 2007 Apr; 100(6):1346-51. PubMed ID: 17211852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle.
    Rouhani M
    J Biol Phys; 2019 Jun; 45(2):127-146. PubMed ID: 30707386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.
    Takeda S; Hoa NN; Sasanuma H
    J Radiat Res; 2016 Aug; 57 Suppl 1(Suppl 1):i25-i32. PubMed ID: 27311583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations.
    Iliakis G; Murmann T; Soni A
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():166-75. PubMed ID: 26520387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing of damaged DNA ends for double-strand break repair in mammalian cells.
    Povirk LF
    ISRN Mol Biol; 2012; 2012():. PubMed ID: 24236237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time analysis of double-strand DNA break repair by homologous recombination.
    Hicks WM; Yamaguchi M; Haber JE
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3108-15. PubMed ID: 21292986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.