These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 21255598)

  • 1. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.
    Rokyta DR; Wray KP; Lemmon AR; Lemmon EM; Caudle SB
    Toxicon; 2011 Apr; 57(5):657-71. PubMed ID: 21255598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Rokyta DR; Lemmon AR; Margres MJ; Aronow K
    BMC Genomics; 2012 Jul; 13():312. PubMed ID: 23025625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.
    Rokyta DR; Wray KP; Margres MJ
    BMC Genomics; 2013 Jun; 14():394. PubMed ID: 23758969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crotalus durissus collilineatus venom gland transcriptome: analysis of gene expression profile.
    Boldrini-França J; Rodrigues RS; Fonseca FP; Menaldo DL; Ferreira FB; Henrique-Silva F; Soares AM; Hamaguchi A; Rodrigues VM; Otaviano AR; Homsi-Brandeburgo MI
    Biochimie; 2009 May; 91(5):586-95. PubMed ID: 19230843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snake venomic of Crotalus durissus terrificus--correlation with pharmacological activities.
    Georgieva D; Ohler M; Seifert J; von Bergen M; Arni RK; Genov N; Betzel C
    J Proteome Res; 2010 May; 9(5):2302-16. PubMed ID: 20205475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; McGivern JJ; Wray KP; Seavy M; Calvin K; Rokyta DR
    J Proteomics; 2014 Jan; 96():145-58. PubMed ID: 24231107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus).
    Rokyta DR; Wray KP; McGivern JJ; Margres MJ
    Toxicon; 2015 May; 98():34-48. PubMed ID: 25727380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; Wray KP; Seavy M; McGivern JJ; Sanader D; Rokyta DR
    Mol Ecol; 2015 Jul; 24(13):3405-20. PubMed ID: 25988233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of mRNAs coding for VAP1/crotastatin-like metalloproteases in the venom glands of three South American pit vipers assessed by quantitative real-time PCR.
    Tavares NA; Correia JM; Guarnieri MC; Lima-Filho JL; Prieto-da-Silva AR; Rádis-Baptista G
    Toxicon; 2008 Dec; 52(8):897-907. PubMed ID: 18926840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.
    Sunagar K; Undheim EA; Scheib H; Gren EC; Cochran C; Person CE; Koludarov I; Kelln W; Hayes WK; King GF; Antunes A; Fry BG
    J Proteomics; 2014 Mar; 99():68-83. PubMed ID: 24463169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes.
    Dowell NL; Giorgianni MW; Kassner VA; Selegue JE; Sanchez EE; Carroll SB
    Curr Biol; 2016 Sep; 26(18):2434-2445. PubMed ID: 27641771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus.
    Higuchi S; Murayama N; Saguchi K; Ohi H; Fujita Y; da Silva NJ; de Siqueira RJ; Lahlou S; Aird SD
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Oct; 144(2):107-21. PubMed ID: 16979945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families.
    Strickland JL; Mason AJ; Rokyta DR; Parkinson CL
    Toxins (Basel); 2018 Mar; 10(4):. PubMed ID: 29570631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper.
    Angulo Y; Lomonte B
    Toxicon; 2009 Dec; 54(7):949-57. PubMed ID: 19111755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea).
    Pahari S; Mackessy SP; Kini RM
    BMC Mol Biol; 2007 Dec; 8():115. PubMed ID: 18096037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of expressed sequence tags from the venom glands of the fish Thalassophryne nattereri.
    Magalhães GS; Junqueira-de-Azevedo IL; Lopes-Ferreira M; Lorenzini DM; Ho PL; Moura-da-Silva AM
    Biochimie; 2006 Jun; 88(6):693-9. PubMed ID: 16488069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis.
    Sanz L; Escolano J; Ferretti M; Biscoglio MJ; Rivera E; Crescenti EJ; Angulo Y; Lomonte B; Gutiérrez JM; Calvete JJ
    J Proteomics; 2008 Apr; 71(1):46-60. PubMed ID: 18541473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of the Amazonian viper Bothrops atrox venom gland using expressed sequence tags (ESTs).
    Neiva M; Arraes FB; de Souza JV; Rádis-Baptista G; Prieto da Silva AR; Walter ME; Brigido Mde M; Yamane T; López-Lozano JL; Astolfi-Filho S
    Toxicon; 2009 Mar; 53(4):427-36. PubMed ID: 19708221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.