These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21255655)

  • 1. Dissociating hippocampal and basal ganglia contributions to category learning using stimulus novelty and subjective judgments.
    Seger CA; Dennison CS; Lopez-Paniagua D; Peterson EJ; Roark AA
    Neuroimage; 2011 Apr; 55(4):1739-53. PubMed ID: 21255655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociating intentional learning from relative novelty responses in the medial temporal lobe.
    Strange BA; Hurlemann R; Duggins A; Heinze HJ; Dolan RJ
    Neuroimage; 2005 Mar; 25(1):51-62. PubMed ID: 15734343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociating the contributions of independent corticostriatal systems to visual categorization learning through the use of reinforcement learning modeling and Granger causality modeling.
    Seger CA; Peterson EJ; Cincotta CM; Lopez-Paniagua D; Anderson CW
    Neuroimage; 2010 Apr; 50(2):644-56. PubMed ID: 19969091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback.
    Seger CA
    Neurosci Biobehav Rev; 2008; 32(2):265-78. PubMed ID: 17919725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct hippocampal and basal ganglia contributions to probabilistic learning and reversal.
    Shohamy D; Myers CE; Hopkins RO; Sage J; Gluck MA
    J Cogn Neurosci; 2009 Sep; 21(9):1821-33. PubMed ID: 18823246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociating patterns of anterior and posterior hippocampal activity and connectivity during distinct forms of category fluency.
    Sheldon S; McAndrews MP; Pruessner J; Moscovitch M
    Neuropsychologia; 2016 Sep; 90():148-58. PubMed ID: 27343687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intuition: a social cognitive neuroscience approach.
    Lieberman MD
    Psychol Bull; 2000 Jan; 126(1):109-37. PubMed ID: 10668352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation between striatal regions while learning to categorize via feedback and via observation.
    Cincotta CM; Seger CA
    J Cogn Neurosci; 2007 Feb; 19(2):249-65. PubMed ID: 17280514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abstract Memory Representations in the Ventromedial Prefrontal Cortex and Hippocampus Support Concept Generalization.
    Bowman CR; Zeithamova D
    J Neurosci; 2018 Mar; 38(10):2605-2614. PubMed ID: 29437891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregating the functions of human hippocampus.
    Strange BA; Fletcher PC; Henson RN; Friston KJ; Dolan RJ
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4034-9. PubMed ID: 10097158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalization in category learning: the roles of representational and decisional uncertainty.
    Seger CA; Braunlich K; Wehe HS; Liu Z
    J Neurosci; 2015 Jun; 35(23):8802-12. PubMed ID: 26063914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential temporo-parietal cortical networks that support relational and item-based recency judgments.
    Kimura HM; Hirose S; Kunimatsu A; Chikazoe J; Jimura K; Watanabe T; Abe O; Ohtomo K; Miyashita Y; Konishi S
    Neuroimage; 2010 Feb; 49(4):3474-80. PubMed ID: 19909817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback-Based Learning in Aging: Contributions and Trajectories of Change in Striatal and Hippocampal Systems.
    Lighthall NR; Pearson JM; Huettel SA; Cabeza R
    J Neurosci; 2018 Sep; 38(39):8453-8462. PubMed ID: 30120208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intuitive decision making as a gradual process: investigating semantic intuition-based and priming-based decisions with fMRI.
    Zander T; Horr NK; Bolte A; Volz KG
    Brain Behav; 2016 Jan; 6(1):e00420. PubMed ID: 27110441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural processes underlying intuitive coherence judgments as revealed by fMRI on a semantic judgment task.
    Ilg R; Vogeley K; Goschke T; Bolte A; Shah JN; Pöppel E; Fink GR
    Neuroimage; 2007 Oct; 38(1):228-38. PubMed ID: 17822926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striatal and midbrain connectivity with the hippocampus selectively boosts memory for contextual novelty.
    Kafkas A; Montaldi D
    Hippocampus; 2015 Nov; 25(11):1262-73. PubMed ID: 25708843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning arbitrary visuomotor associations: temporal dynamic of brain activity.
    Toni I; Ramnani N; Josephs O; Ashburner J; Passingham RE
    Neuroimage; 2001 Nov; 14(5):1048-57. PubMed ID: 11697936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Where is my reward and how do I get it? Interaction between the hippocampus and the basal ganglia during spatial learning.
    Retailleau A; Etienne S; Guthrie M; Boraud T
    J Physiol Paris; 2012; 106(3-4):72-80. PubMed ID: 22033208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.
    Jueptner M; Weiller C
    Brain; 1998 Aug; 121 ( Pt 8)():1437-49. PubMed ID: 9712006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel contributions of distinct human memory systems during probabilistic learning.
    Dickerson KC; Li J; Delgado MR
    Neuroimage; 2011 Mar; 55(1):266-76. PubMed ID: 21056678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.