BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 21255817)

  • 1. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.
    Durante C; Cuscov M; Isse AA; Sandonà G; Gennaro A
    Water Res; 2011 Feb; 45(5):2122-30. PubMed ID: 21255817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exhaustive depletion of recalcitrant chromium fractions in a real wastewater.
    Durante C; Isse AA; Sandonà G; Gennaro A
    Chemosphere; 2010 Jan; 78(5):620-5. PubMed ID: 19913874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode.
    Garcia-Segura S; Brillas E
    Water Res; 2011 Apr; 45(9):2975-84. PubMed ID: 21477836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II).
    Mukhopadhyay B; Sundquist J; Schmitz RJ
    J Environ Manage; 2007 Jan; 82(1):66-76. PubMed ID: 16545518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr(VI) and Cr(VI)-diphenylcarbazide removal from aqueous solutions using an iron rotating disc electrode.
    Campos E; Barrera-Díaz C; Ureña-Núñez F; Palomar-Pardavé M
    Environ Technol; 2007 Jan; 28(1):1-9. PubMed ID: 17283943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths.
    Ouejhani A; Hellal F; Dachraoui M; Lallevé G; Fauvarque JF
    J Hazard Mater; 2008 Sep; 157(2-3):423-31. PubMed ID: 18314266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network.
    Aber S; Amani-Ghadim AR; Mirzajani V
    J Hazard Mater; 2009 Nov; 171(1-3):484-90. PubMed ID: 19589640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology.
    Bhatti MS; Reddy AS; Thukral AK
    J Hazard Mater; 2009 Dec; 172(2-3):839-46. PubMed ID: 19695770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes.
    Rodríguez R MG; Mendoza V; Puebla H; Martínez D SA
    J Hazard Mater; 2009 Apr; 163(2-3):1221-9. PubMed ID: 18775602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical treatment of spent solution after EDTA-based soil washing.
    Voglar D; Lestan D
    Water Res; 2012 Apr; 46(6):1999-2008. PubMed ID: 22305659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of Cr(III) in tannery sludge to Cr(VI): field observations and theoretical assessment.
    Apte AD; Verma S; Tare V; Bose P
    J Hazard Mater; 2005 May; 121(1-3):215-22. PubMed ID: 15885424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium species behaviour in the activated sludge process.
    Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD
    Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system.
    Ahmad WA; Zakaria ZA; Khasim AR; Alias MA; Ismail SM
    Bioresour Technol; 2010 Jun; 101(12):4371-8. PubMed ID: 20185301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N2 on boron-doped diamond cathode.
    Georgeaud V; Diamand A; Borrut D; Grange D; Coste M
    Water Sci Technol; 2011; 63(2):206-12. PubMed ID: 21252421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound mediated reduction of Cr(VI) using sludge obtained during electrocoagulation.
    Kathiravan MN; Muthukumar K
    Environ Technol; 2011 Oct; 32(13-14):1523-31. PubMed ID: 22329143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destruction of organic pollutants in reusable wastewater using advanced oxidation technology.
    Yang C; Xu YR; Teo KC; Goh NK; Chia LS; Xie RJ
    Chemosphere; 2005 Apr; 59(3):441-5. PubMed ID: 15763097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical treatment of the effluent of a fine chemical manufacturing plant.
    Cañizares P; Paz R; Lobato J; Sáez C; Rodrigo MA
    J Hazard Mater; 2006 Nov; 138(1):173-81. PubMed ID: 16806682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of waste iron metal for removal of Cr(VI) from water.
    Lee T; Lim H; Lee Y; Park JW
    Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.