BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21255903)

  • 1. Applications of pressure perturbation calorimetry in biophysical studies.
    Zhai Y; Okoro L; Cooper A; Winter R
    Biophys Chem; 2011 Jun; 156(1):13-23. PubMed ID: 21255903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding.
    Suladze S; Kahse M; Erwin N; Tomazic D; Winter R
    Methods; 2015 Apr; 76():67-77. PubMed ID: 25168090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution--experiments and theoretical interpretation.
    Mitra L; Smolin N; Ravindra R; Royer C; Winter R
    Phys Chem Chem Phys; 2006 Mar; 8(11):1249-65. PubMed ID: 16633605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions.
    Cooper A; Cameron D; Jakus J; Pettigrew GW
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1547-50. PubMed ID: 18031264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of pressure perturbation calorimetry to study factors contributing to the volume changes upon protein unfolding.
    Pandharipande PP; Makhatadze GI
    Biochim Biophys Acta; 2016 May; 1860(5):1036-1042. PubMed ID: 26341789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IATC, DSC, and PPC Analysis of Reversible and Multistate Structural Transition of Cytochrome c.
    Kidokoro S; Nakamura S
    Methods Enzymol; 2016; 567():391-412. PubMed ID: 26794362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure perturbation calorimetry.
    Heerklotz PD
    Methods Mol Biol; 2007; 400():197-206. PubMed ID: 17951735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of pressure perturbation calorimetry to lipid bilayers.
    Heerklotz H; Seelig J
    Biophys J; 2002 Mar; 82(3):1445-52. PubMed ID: 11867459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry.
    Lin LN; Brandts JF; Brandts JM; Plotnikov V
    Anal Biochem; 2002 Mar; 302(1):144-60. PubMed ID: 11846388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of isothermal titration calorimetry in RNA biochemistry and biophysics.
    Feig AL
    Biopolymers; 2007 Dec 5-15; 87(5-6):293-301. PubMed ID: 17671974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Chong PL; Ravindra R; Khurana M; English V; Winter R
    Biophys J; 2005 Sep; 89(3):1841-9. PubMed ID: 15980181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions.
    Cooper A; Johnson CM; Lakey JH; Nöllmann M
    Biophys Chem; 2001 Nov; 93(2-3):215-30. PubMed ID: 11804727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of pressure perturbation calorimetry to characterize the volumetric properties of proteins.
    Schweiker KL; Makhatadze GI
    Methods Enzymol; 2009; 466():527-47. PubMed ID: 21609875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of protein-ligand interactions: history, presence, and future aspects.
    Perozzo R; Folkers G; Scapozza L
    J Recept Signal Transduct Res; 2004 Feb; 24(1-2):1-52. PubMed ID: 15344878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.
    Huang R; Lau BLT
    Biochim Biophys Acta; 2016 May; 1860(5):945-956. PubMed ID: 26851677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocols of IATC, DSC, and PPC: The Multistate Structural Transition of Cytochrome c.
    Nakamura S; Kidokoro SI
    Methods Mol Biol; 2019; 1964():17-32. PubMed ID: 30929232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides.
    Arias M; Prenner EJ; Vogel HJ
    Methods Mol Biol; 2017; 1548():119-140. PubMed ID: 28013501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric properties of the molten globule state of cytochrome c in the thermal three-state transition evaluated by pressure perturbation calorimetry.
    Nakamura S; Kidokoro S
    J Phys Chem B; 2012 Feb; 116(6):1927-32. PubMed ID: 22201547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of expansivity of native globular proteins: a pressure perturbation calorimetry study.
    Vasilchuk D; Pandharipande PP; Suladze S; Sanchez-Ruiz JM; Makhatadze GI
    J Phys Chem B; 2014 Jun; 118(23):6117-22. PubMed ID: 24849138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isothermal titration calorimetry as a tool to determine the thermodynamics of demicellization processes.
    Kessler A; Zeeb B; Kranz B; Menéndez-Aguirre O; Fischer L; Hinrichs J; Weiss J
    Rev Sci Instrum; 2012 Oct; 83(10):105104. PubMed ID: 23126801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.