These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 21255992)
41. Synthesis of functional SiO₂-coated graphene oxide nanosheets decorated with Ag nanoparticles for H₂O₂ and glucose detection. Lu W; Luo Y; Chang G; Sun X Biosens Bioelectron; 2011 Aug; 26(12):4791-7. PubMed ID: 21733668 [TBL] [Abstract][Full Text] [Related]
42. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Wang H; Wang X; Zhang X; Qin X; Zhao Z; Miao Z; Huang N; Chen Q Biosens Bioelectron; 2009 Sep; 25(1):142-6. PubMed ID: 19595586 [TBL] [Abstract][Full Text] [Related]
43. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Pérez López B; Merkoçi A Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175 [TBL] [Abstract][Full Text] [Related]
44. Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Saxena U; Chakraborty M; Goswami P Biosens Bioelectron; 2011 Feb; 26(6):3037-43. PubMed ID: 21195602 [TBL] [Abstract][Full Text] [Related]
45. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Gopalan AI; Lee KP; Ragupathy D Biosens Bioelectron; 2009 Mar; 24(7):2211-7. PubMed ID: 19167880 [TBL] [Abstract][Full Text] [Related]
46. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor. Alarcón G; Guix M; Ambrosi A; Ramirez Silva MT; Palomar Pardave ME; Merkoçi A Nanotechnology; 2010 Jun; 21(24):245502. PubMed ID: 20498520 [TBL] [Abstract][Full Text] [Related]
47. Methods for the preparation of electrochemical composite biosensors based on gold nanoparticles. González-Cortés A; Yáñez-Sedeño P; Pingarrón JM Methods Mol Biol; 2009; 504():157-66. PubMed ID: 19159097 [TBL] [Abstract][Full Text] [Related]
48. Immobilization of tyrosinase on Fe Arkan E; Karami C; Rafipur R J Biol Inorg Chem; 2019 Oct; 24(7):961-969. PubMed ID: 31359186 [TBL] [Abstract][Full Text] [Related]
49. Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. Guix M; Pérez-López B; Sahin M; Roldán M; Ambrosi A; Merkoçi A Analyst; 2010 Aug; 135(8):1918-25. PubMed ID: 20532304 [TBL] [Abstract][Full Text] [Related]
50. Disposable biosensor based on nanodiamond particles, ionic liquid and poly-l-lysine for determination of phenolic compounds. Şener D; Erden PE; Kaçar Selvi C Anal Biochem; 2024 May; 688():115464. PubMed ID: 38244752 [TBL] [Abstract][Full Text] [Related]
51. Immobilization of acetylcholineesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Upadhyay S; Rao GR; Sharma MK; Bhattacharya BK; Rao VK; Vijayaraghavan R Biosens Bioelectron; 2009 Dec; 25(4):832-8. PubMed ID: 19762223 [TBL] [Abstract][Full Text] [Related]
52. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes. Loaiza ÓA; Jubete E; Ochoteco E; Cabañero G; Grande H; Rodríguez J Biosens Bioelectron; 2011 Jan; 26(5):2194-200. PubMed ID: 20951565 [TBL] [Abstract][Full Text] [Related]
53. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Zhang M; Yuan R; Chai Y; Chen S; Zhong H; Wang C; Cheng Y Biosens Bioelectron; 2012 Feb; 32(1):288-92. PubMed ID: 22206786 [TBL] [Abstract][Full Text] [Related]
54. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Zhang L; Jiang X; Wang E; Dong S Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961 [TBL] [Abstract][Full Text] [Related]
55. Development of a paper-type tyrosinase biosensor for detection of phenolic compounds. Şenyurt Ö; Eyidoğan F; Yılmaz R; Öz MT; Özalp VC; Arıca Y; Öktem HA Biotechnol Appl Biochem; 2015; 62(1):132-6. PubMed ID: 24847915 [TBL] [Abstract][Full Text] [Related]
56. A novel reagentless amperometric immunosensor based on gold nanoparticles/TMB/Nafion-modified electrode. Wu Y; Zheng J; Li Z; Zhao Y; Zhang Y Biosens Bioelectron; 2009 Jan; 24(5):1389-93. PubMed ID: 18799302 [TBL] [Abstract][Full Text] [Related]
57. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Zhang S; Wang N; Yu H; Niu Y; Sun C Bioelectrochemistry; 2005 Sep; 67(1):15-22. PubMed ID: 15967397 [TBL] [Abstract][Full Text] [Related]
58. The Investigation of Electrochemistry Behaviors of Tyrosinase Based on Directly-Electrodeposited Grapheneon Choline-Gold Nanoparticles. He Y; Yang X; Han Q; Zheng J Molecules; 2017 Jun; 22(7):. PubMed ID: 28644401 [TBL] [Abstract][Full Text] [Related]
59. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Chu X; Duan D; Shen G; Yu R Talanta; 2007 Mar; 71(5):2040-7. PubMed ID: 19071561 [TBL] [Abstract][Full Text] [Related]
60. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Wee Y; Park S; Kwon YH; Ju Y; Yeon KM; Kim J Biosens Bioelectron; 2019 May; 132():279-285. PubMed ID: 30884314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]