BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21255993)

  • 1. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength.
    Ji E; Moon H; Piao J; Ha PT; An J; Kim D; Woo JJ; Lee Y; Moon SH; Rittmann BE; Chang IS
    Biosens Bioelectron; 2011 Mar; 26(7):3266-71. PubMed ID: 21255993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved performance of single-chamber microbial fuel cells through control of membrane deformation.
    Zhang X; Cheng S; Huang X; Logan BE
    Biosens Bioelectron; 2010 Mar; 25(7):1825-8. PubMed ID: 20022480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane.
    Liu Z; Liu J; Zhang S; Su Z
    Biotechnol Lett; 2008 Jun; 30(6):1017-23. PubMed ID: 18259873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane.
    Pandit S; Sengupta A; Kale S; Das D
    Bioresour Technol; 2011 Feb; 102(3):2736-44. PubMed ID: 21129959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales.
    Ren Z; Yan H; Wang W; Mench MM; Regan JM
    Environ Sci Technol; 2011 Mar; 45(6):2435-41. PubMed ID: 21329346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage.
    Ha PT; Moon H; Kim BH; Ng HY; Chang IS
    Biosens Bioelectron; 2010 Mar; 25(7):1629-34. PubMed ID: 20036528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer.
    Tugtas AE; Cavdar P; Calli B
    Bioresour Technol; 2011 Nov; 102(22):10425-30. PubMed ID: 21963900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the internal resistance distribution of microbial fuel cells.
    Fan Y; Sharbrough E; Liu H
    Environ Sci Technol; 2008 Nov; 42(21):8101-7. PubMed ID: 19031909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.
    Yang Z; Hou J; Wang X; Wu L; Xu T
    Macromol Rapid Commun; 2015 Jul; 36(14):1362-7. PubMed ID: 25962480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of real-time external resistance optimization on microbial fuel cell performance.
    Pinto RP; Srinivasan B; Guiot SR; Tartakovsky B
    Water Res; 2011 Feb; 45(4):1571-8. PubMed ID: 21167550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the separators for microbial fuel cells.
    Li WW; Sheng GP; Liu XW; Yu HQ
    Bioresour Technol; 2011 Jan; 102(1):244-52. PubMed ID: 20382524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving performance of MFC by design alteration and adding cathodic electrolytes.
    Jadhav GS; Ghangrekar MM
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):319-32. PubMed ID: 18438635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.