BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21256136)

  • 1. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering.
    Sawitzke JA; Costantino N; Li XT; Thomason LC; Bubunenko M; Court C; Court DL
    J Mol Biol; 2011 Mar; 407(1):45-59. PubMed ID: 21256136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants.
    Costantino N; Court DL
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15748-53. PubMed ID: 14673109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli.
    Li XT; Costantino N; Lu LY; Liu DP; Watt RM; Cheah KS; Court DL; Huang JD
    Nucleic Acids Res; 2003 Nov; 31(22):6674-87. PubMed ID: 14602928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lambda red mediated gap repair utilizes a novel replicative intermediate in Escherichia coli.
    Reddy TR; Fevat LM; Munson SE; Stewart AF; Cowley SM
    PLoS One; 2015; 10(3):e0120681. PubMed ID: 25803509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
    Sawitzke JA; Thomason LC; Bubunenko M; Li X; Costantino N; Court DL
    Methods Enzymol; 2013; 533():157-77. PubMed ID: 24182922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial DNA polymerases participate in oligonucleotide recombination.
    Li XT; Thomason LC; Sawitzke JA; Costantino N; Court DL
    Mol Microbiol; 2013 Jun; 88(5):906-20. PubMed ID: 23634873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate.
    Mosberg JA; Lajoie MJ; Church GM
    Genetics; 2010 Nov; 186(3):791-9. PubMed ID: 20813883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate.
    Yu D; Sawitzke JA; Ellis H; Court DL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7207-12. PubMed ID: 12771385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.
    Thomason LC; Costantino N; Court DL
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombineering in Non-Model Bacteria.
    Corts A; Thomason LC; Costantino N; Court DL
    Curr Protoc; 2022 Dec; 2(12):e605. PubMed ID: 36546891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 'Semi-Protected Oligonucleotide Recombination' Assay for DNA Mismatch Repair in vivo Suggests Different Modes of Repair for Lagging Strand Mismatches.
    Josephs EA; Marszalek PE
    Nucleic Acids Res; 2017 May; 45(8):e63. PubMed ID: 28053122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of a new recombineering system by gap repair].
    Li SH; Hong X; Yu M; Chen W; Huang CF; Zhou JG
    Yi Chuan Xue Bao; 2005 May; 32(5):533-7. PubMed ID: 16018266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient deletion method for the engineering of plasmid DNA with single-stranded oligonucleotides.
    Lu LY; Huen MS; Tai AC; Liu DP; Cheah KS; Huang JD
    Biotechniques; 2008 Feb; 44(2):217-20, 222, 224. PubMed ID: 18330349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides.
    Ellis HM; Yu D; DiTizio T; Court DL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6742-6. PubMed ID: 11381128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombineering: Genetic Engineering in Escherichia coli Using Homologous Recombination.
    Thomason LC; Costantino N; Li X; Court DL
    Curr Protoc; 2023 Feb; 3(2):e656. PubMed ID: 36779782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RecA-independent single-stranded DNA oligonucleotide-mediated mutagenesis.
    Murphy KC; Marinus MG
    F1000 Biol Rep; 2010 Jul; 2():56. PubMed ID: 20711416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases.
    Mosberg JA; Gregg CJ; Lajoie MJ; Wang HH; Church GM
    PLoS One; 2012; 7(9):e44638. PubMed ID: 22957093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligonucleotide recombination in Gram-negative bacteria.
    Swingle B; Markel E; Costantino N; Bubunenko MG; Cartinhour S; Court DL
    Mol Microbiol; 2010 Jan; 75(1):138-48. PubMed ID: 19943907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endonuclease-independent DNA mismatch repair processes on the lagging strand.
    Josephs EA; Marszalek PE
    DNA Repair (Amst); 2018 Aug; 68():41-49. PubMed ID: 29929046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The involvement of replication in single stranded oligonucleotide-mediated gene repair.
    Huen MS; Li XT; Lu LY; Watt RM; Liu DP; Huang JD
    Nucleic Acids Res; 2006; 34(21):6183-94. PubMed ID: 17088285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.