These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21256136)

  • 61. Evidence for conservative (two-progeny) DNA double-strand break repair.
    Yokochi T; Kusano K; Kobayashi I
    Genetics; 1995 Jan; 139(1):5-17. PubMed ID: 7705650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A set of recombineering plasmids for gram-negative bacteria.
    Datta S; Costantino N; Court DL
    Gene; 2006 Sep; 379():109-15. PubMed ID: 16750601
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence for the double-strand break repair model of bacteriophage lambda recombination.
    Takahashi N; Kobayashi I
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2790-4. PubMed ID: 2138786
    [TBL] [Abstract][Full Text] [Related]  

  • 64. p53-mediated DNA renaturation can mimic strand exchange.
    Jean D; Gendron D; Delbecchi L; Bourgaux P
    Nucleic Acids Res; 1997 Oct; 25(20):4004-12. PubMed ID: 9321650
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Rad51-independent pathway promotes single-strand template repair in gene editing.
    Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE
    PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains.
    Lee DJ; Bingle LE; Heurlier K; Pallen MJ; Penn CW; Busby SJ; Hobman JL
    BMC Microbiol; 2009 Dec; 9():252. PubMed ID: 20003185
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oligo- and dsDNA-mediated genome editing using a tetA dual selection system in Escherichia coli.
    Ryu YS; Chandran SP; Kim K; Lee SK
    PLoS One; 2017; 12(7):e0181501. PubMed ID: 28719630
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Response of repair-competent and repair-deficient Escherichia coli to three O6-substituted guanines and involvement of methyl-directed mismatch repair in the processing of O6-methylguanine residues.
    Pauly GT; Hughes SH; Moschel RC
    Biochemistry; 1994 Aug; 33(31):9169-77. PubMed ID: 8049220
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single-strand gap repair involves both RecF and RecBCD pathways.
    Pagès V
    Curr Genet; 2016 Aug; 62(3):519-21. PubMed ID: 26874520
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.
    Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2015 Aug; 81(15):5103-14. PubMed ID: 26002895
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Scarless Recombineering of Phage in Lysogenic State.
    Ababi M; Tridgett M; Osgerby A; Jaramillo A
    Methods Mol Biol; 2022; 2479():1-9. PubMed ID: 35583728
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bacillus subtilis bacteriophage SPP1-encoded gene 34.1 product is a recombination-dependent DNA replication protein.
    Martínez-Jiménez MI; Alonso JC; Ayora S
    J Mol Biol; 2005 Sep; 351(5):1007-19. PubMed ID: 16055153
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chromosomal directionality of DNA mismatch repair in Escherichia coli.
    Hasan AM; Leach DR
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9388-93. PubMed ID: 26170312
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transformation with oligonucleotides creating clustered changes in the yeast genome.
    Rodriguez GP; Song JB; Crouse GF
    PLoS One; 2012; 7(8):e42905. PubMed ID: 22916177
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.
    Krylov AA; Kolontaevsky EE; Mashko SV
    J Microbiol Methods; 2014 Oct; 105():109-15. PubMed ID: 25087479
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes.
    Zhang G; Wang J; Li Y; Shang G
    Biotechnol Lett; 2023 Jun; 45(5-6):629-637. PubMed ID: 36930400
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A highly efficient recombineering-based method for generating conditional knockout mutations.
    Liu P; Jenkins NA; Copeland NG
    Genome Res; 2003 Mar; 13(3):476-84. PubMed ID: 12618378
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The intrinsically disordered linker in the single-stranded DNA-binding protein influences DNA replication restart and recombination pathways in
    Sandler SJ; Bonde NJ; Wood EA; Cox MM; Keck JL
    J Bacteriol; 2024 Apr; 206(4):e0033023. PubMed ID: 38470036
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Recombineering and its application].
    Zhou JG; Hong X; Huang CF
    Yi Chuan Xue Bao; 2003 Oct; 30(10):983-8. PubMed ID: 14669518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.