These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21256253)

  • 1. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.
    O'Donnell MD
    Acta Biomater; 2011 May; 7(5):2264-9. PubMed ID: 21256253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.
    Hill RG; Brauer DS
    Acta Biomater; 2011 Oct; 7(10):3601-5. PubMed ID: 21723965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses.
    Stavrou E; Tsiantos C; Tsopouridou RD; Kripotou S; Kontos AG; Raptis C; Capoen B; Bouazaoui M; Turrell S; Khatir S
    J Phys Condens Matter; 2010 May; 22(19):195103. PubMed ID: 21386447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental considerations on the enthalpic relaxation of organic glasses using differential scanning calorimetry.
    Mao C; Chamarthy SP; Byrn SR; Pinal R
    J Phys Chem B; 2010 Jan; 114(1):269-79. PubMed ID: 20017467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of ribavirin glass in the sub-Tg temperature region.
    Kawakami K
    J Phys Chem B; 2011 Oct; 115(39):11375-81. PubMed ID: 21870781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regression model for predicting selected thermal properties of next-generation bioactive glasses.
    Breed SM; Hall MM
    Acta Biomater; 2012 Jul; 8(6):2324-30. PubMed ID: 22342828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.
    van Sleeuwen RM; Zhang S; Normand V
    Biomacromolecules; 2012 Mar; 13(3):787-97. PubMed ID: 22268547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.
    Fu Q; Rahaman MN; Fu H; Liu X
    J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial reactions of glasses for biomedical application by scanning transmission electron microscopy and microanalysis.
    Banchet V; Michel J; Jallot E; Wortham L; Bouthors S; Laurent-Maquin D; Balossier G
    Acta Biomater; 2006 May; 2(3):349-59. PubMed ID: 16701894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in-vitro bioactivity of mesoporous bioactive glasses.
    Yan X; Huang X; Yu C; Deng H; Wang Y; Zhang Z; Qiao S; Lu G; Zhao D
    Biomaterials; 2006 Jun; 27(18):3396-403. PubMed ID: 16504289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-property relationships of potentially bioactive fluoro phospho-silicate glasses.
    Lusvardi G; Malavasi G; Tarsitano F; Menabue L; Menziani MC; Pedone A
    J Phys Chem B; 2009 Jul; 113(30):10331-8. PubMed ID: 19572677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer.
    Fagerlund S; Hupa L; Hupa M
    Acta Biomater; 2013 Feb; 9(2):5400-10. PubMed ID: 22967942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures.
    Ogawa S; Asakura K; Osanai S
    Carbohydr Res; 2010 Nov; 345(17):2534-41. PubMed ID: 20889145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Thermal properties of collagen-water system. 1. Increments of heat capacity during denaturation and glass transition].
    Tsereteli GI; Belopol'skaia TV; Mel'nik TN
    Biofizika; 1997; 42(1):68-74. PubMed ID: 9181803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.
    Kansal I; Tulyaganov DU; Goel A; Pascual MJ; Ferreira JM
    Acta Biomater; 2010 Nov; 6(11):4380-8. PubMed ID: 20561991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral analysis of Cu(2+): B(2)O(3)--ZnO--PbO glasses.
    Lakshminarayana G; Buddhudu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):364-71. PubMed ID: 16257737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Characterizations of silver-containing bioactive glass-coated Sutures.
    Blaker JJ; Boccaccini AR; Nazhat SN
    J Biomater Appl; 2005 Jul; 20(1):81-98. PubMed ID: 15972365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.
    Jiang B; Kasapis S
    J Agric Food Chem; 2011 Nov; 59(21):11825-32. PubMed ID: 21936521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.