BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21256830)

  • 1. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3.
    Staab CA; Hartmanová T; El-Hawari Y; Ebert B; Kisiela M; Wsol V; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):95-103. PubMed ID: 21256830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity.
    Hartmanová T; Tambor V; Lenčo J; Staab-Weijnitz CA; Maser E; Wsól V
    Chem Biol Interact; 2013 Feb; 202(1-3):136-45. PubMed ID: 23295225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of the substrate-binding loop region of human monomeric carbonyl reductases in catalysis and coenzyme binding.
    Miura T; Nishinaka T; Terada T
    Life Sci; 2009 Aug; 85(7-8):303-8. PubMed ID: 19555696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitors.
    Staab CA; Alander J; Brandt M; Lengqvist J; Morgenstern R; Grafström RC; Höög JO
    Biochem J; 2008 Aug; 413(3):493-504. PubMed ID: 18412547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the role of the amino acid residue at position 230 for catalysis in monomeric carbonyl reductase 3.
    Miura T; Itoh Y; Takada M; Tsutsui H; Yukimura T; Nishinaka T; Terada T
    Chem Biol Interact; 2009 Mar; 178(1-3):211-4. PubMed ID: 18983987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium-chain fatty acids and glutathione derivatives as inhibitors of S-nitrosoglutathione reduction mediated by alcohol dehydrogenase 3.
    Staab CA; Hellgren M; Grafström RC; Höög JO
    Chem Biol Interact; 2009 Jun; 180(1):113-8. PubMed ID: 19428350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M.
    Clark DD; Boyd JM; Ensign SA
    Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione.
    Tao L; English AM
    Biochemistry; 2004 Apr; 43(13):4028-38. PubMed ID: 15049710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Janus face of alcohol dehydrogenase 3.
    Staab CA; Alander J; Morgenstern R; Grafström RC; Höög JO
    Chem Biol Interact; 2009 Mar; 178(1-3):29-35. PubMed ID: 19038239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonyl reduction of mequindox by chicken and porcine cytosol and cloned carbonyl reductase 1.
    Tang X; Mu P; Wu J; Jiang J; Zhang C; Zheng M; Deng Y
    Drug Metab Dispos; 2012 Apr; 40(4):788-95. PubMed ID: 22266778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for substrate specificity in human monomeric carbonyl reductases.
    Pilka ES; Niesen FH; Lee WH; El-Hawari Y; Dunford JE; Kochan G; Wsol V; Martin HJ; Maser E; Oppermann U
    PLoS One; 2009 Oct; 4(10):e7113. PubMed ID: 19841672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver.
    Kassner N; Huse K; Martin HJ; Gödtel-Armbrust U; Metzger A; Meineke I; Brockmöller J; Klein K; Zanger UM; Maser E; Wojnowski L
    Drug Metab Dispos; 2008 Oct; 36(10):2113-20. PubMed ID: 18635746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a cyclic GMP-independent mechanism in the anti-platelet action of S-nitrosoglutathione.
    Gordge MP; Hothersall JS; Noronha-Dutra AA
    Br J Pharmacol; 1998 May; 124(1):141-8. PubMed ID: 9630353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of asparagine 510 in the relative timing of substrate bond cleavages in the reaction catalyzed by choline oxidase.
    Rungsrisuriyachai K; Gadda G
    Biochemistry; 2010 Mar; 49(11):2483-90. PubMed ID: 20163155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation.
    Coles SJ; Easton P; Sharrod H; Hutson SM; Hancock J; Patel VB; Conway ME
    Biochemistry; 2009 Jan; 48(3):645-56. PubMed ID: 19119849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-Nitrosation of Conserved Cysteines Modulates Activity and Stability of S-Nitrosoglutathione Reductase (GSNOR).
    Guerra D; Ballard K; Truebridge I; Vierling E
    Biochemistry; 2016 May; 55(17):2452-64. PubMed ID: 27064847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition for N6022, a first-in-class drug targeting S-nitrosoglutathione reductase.
    Green LS; Chun LE; Patton AK; Sun X; Rosenthal GJ; Richards JP
    Biochemistry; 2012 Mar; 51(10):2157-68. PubMed ID: 22335564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chinese hamster monomeric carbonyl reductases of the short-chain dehydrogenase/reductase superfamily.
    Miura T; Nishinaka T; Takama M; Murakami M; Terada T
    Chem Biol Interact; 2009 Mar; 178(1-3):110-6. PubMed ID: 18983989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide dismutase targets NO from GSNO to Cysbeta93 of oxyhemoglobin in concentrated but not dilute solutions of the protein.
    Romeo AA; Capobianco JA; English AM
    J Am Chem Soc; 2003 Nov; 125(47):14370-8. PubMed ID: 14624585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.