BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21256847)

  • 1. Characterization of inositol phospho-sphingolipid-phospholipase C 1 (Isc1) in Cryptococcus neoformans reveals unique biochemical features.
    Henry J; Guillotte A; Luberto C; Del Poeta M
    FEBS Lett; 2011 Feb; 585(4):635-40. PubMed ID: 21256847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol phosphosphingolipid phospholipase C1 regulates plasma membrane ATPase (Pma1) stability in Cryptococcus neoformans.
    Farnoud AM; Mor V; Singh A; Del Poeta M
    FEBS Lett; 2014 Nov; 588(21):3932-8. PubMed ID: 25240197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system.
    Shea JM; Kechichian TB; Luberto C; Del Poeta M
    Infect Immun; 2006 Oct; 74(10):5977-88. PubMed ID: 16988277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae.
    Sawai H; Okamoto Y; Luberto C; Mao C; Bielawska A; Domae N; Hannun YA
    J Biol Chem; 2000 Dec; 275(50):39793-8. PubMed ID: 11006294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thematic review series: sphingolipids. ISC1 (inositol phosphosphingolipid-phospholipase C), the yeast homologue of neutral sphingomyelinases.
    Matmati N; Hannun YA
    J Lipid Res; 2008 May; 49(5):922-8. PubMed ID: 18305313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta1,2-xylosyltransferase Cxt1p is solely responsible for xylose incorporation into Cryptococcus neoformans glycosphingolipids.
    Castle SA; Owuor EA; Thompson SH; Garnsey MR; Klutts JS; Doering TL; Levery SB
    Eukaryot Cell; 2008 Sep; 7(9):1611-5. PubMed ID: 18676952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of pathogenicity of Cryptococcus neoformans.
    Garcia J; Shea J; Alvarez-Vasquez F; Qureshi A; Luberto C; Voit EO; Del Poeta M
    Mol Syst Biol; 2008; 4():183. PubMed ID: 18414484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans.
    Heung LJ; Luberto C; Plowden A; Hannun YA; Del Poeta M
    J Biol Chem; 2004 May; 279(20):21144-53. PubMed ID: 15014071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipase C of Cryptococcus neoformans regulates homeostasis and virulence by providing inositol trisphosphate as a substrate for Arg1 kinase.
    Lev S; Desmarini D; Li C; Chayakulkeeree M; Traven A; Sorrell TC; Djordjevic JT
    Infect Immun; 2013 Apr; 81(4):1245-55. PubMed ID: 23381992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal Kinases With a Sweet Tooth: Pleiotropic Roles of Their Phosphorylated Inositol Sugar Products in the Pathogenicity of
    Lev S; Li C; Desmarini D; Sorrell TC; Saiardi A; Djordjevic JT
    Front Cell Infect Microbiol; 2019; 9():248. PubMed ID: 31380293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of sphingomyelin synthase in controlling the antimicrobial activity of neutrophils against Cryptococcus neoformans.
    Qureshi A; Subathra M; Grey A; Schey K; Del Poeta M; Luberto C
    PLoS One; 2010 Dec; 5(12):e15587. PubMed ID: 21203393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae.
    Cowart LA; Okamoto Y; Lu X; Hannun YA
    Biochem J; 2006 Feb; 393(Pt 3):733-40. PubMed ID: 16201964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans.
    Rittershaus PC; Kechichian TB; Allegood JC; Merrill AH; Hennig M; Luberto C; Del Poeta M
    J Clin Invest; 2006 Jun; 116(6):1651-9. PubMed ID: 16741577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism.
    Liao G; Wang Y; Liu TB; Kohli G; Qian W; Shor E; Subbian S; Xue C
    Fungal Genet Biol; 2018 Apr; 113():42-51. PubMed ID: 29357302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi.
    Watanabe T; Ito T; Goda HM; Ishibashi Y; Miyamoto T; Ikeda K; Taguchi R; Okino N; Ito M
    J Biol Chem; 2015 Jan; 290(2):1005-19. PubMed ID: 25361768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptococcal phospholipases: a novel lysophospholipase discovered in the pathogenic fungus Cryptococcus gattii.
    Wright LC; Payne J; Santangelo RT; Simpanya MF; Chen SC; Widmer F; Sorrell TC
    Biochem J; 2004 Dec; 384(Pt 2):377-84. PubMed ID: 15320865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmentally regulated sphingolipid degradation in Leishmania major.
    Zhang O; Xu W; Balakrishna Pillai A; Zhang K
    PLoS One; 2012; 7(1):e31059. PubMed ID: 22299050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. APP1 transcription is regulated by inositol-phosphorylceramide synthase 1-diacylglycerol pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans.
    Mare L; Iatta R; Montagna MT; Luberto C; Del Poeta M
    J Biol Chem; 2005 Oct; 280(43):36055-64. PubMed ID: 16129666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice.
    Tripathi K; Mor V; Bairwa NK; Del Poeta M; Mohanty BK
    Front Microbiol; 2012; 3():187. PubMed ID: 22783238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid signaling in fungal pathogens.
    Rhome R; Del Poeta M
    Adv Exp Med Biol; 2010; 688():232-7. PubMed ID: 20919658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.