BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21256958)

  • 1. Inhibition of tubulin polymerization by hypochlorous acid and chloramines.
    Landino LM; Hagedorn TD; Kim SB; Hogan KM
    Free Radic Biol Med; 2011 Apr; 50(8):1000-8. PubMed ID: 21256958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothiocyanous acid oxidation of tubulin cysteines inhibits microtubule polymerization.
    Clark HM; Hagedorn TD; Landino LM
    Arch Biochem Biophys; 2014 Jan; 541():67-73. PubMed ID: 24215946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation.
    Midwinter RG; Cheah FC; Moskovitz J; Vissers MC; Winterbourn CC
    Biochem J; 2006 May; 396(1):71-8. PubMed ID: 16405428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate.
    Peskin AV; Winterbourn CC
    Free Radic Biol Med; 2001 Mar; 30(5):572-9. PubMed ID: 11182528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines.
    Stacey MM; Vissers MC; Winterbourn CC
    Antioxid Redox Signal; 2012 Aug; 17(3):411-21. PubMed ID: 22229717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxynitrite oxidation of tubulin sulfhydryls inhibits microtubule polymerization.
    Landino LM; Hasan R; McGaw A; Cooley S; Smith AW; Masselam K; Kim G
    Arch Biochem Biophys; 2002 Feb; 398(2):213-20. PubMed ID: 11831852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase.
    Peskin AV; Winterbourn CC
    Free Radic Biol Med; 2006 Jan; 40(1):45-53. PubMed ID: 16337878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2.
    Stacey MM; Peskin AV; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2009 Nov; 47(10):1468-76. PubMed ID: 19716412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
    Landino LM; Hagedorn TD; Kennett KL
    Cytoskeleton (Hoboken); 2014 Dec; 71(12):707-18. PubMed ID: 25545749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines.
    Summers FA; Forsman Quigley A; Hawkins CL
    Biochem Biophys Res Commun; 2012 Aug; 425(2):157-61. PubMed ID: 22819842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione.
    Peskin AV; Winterbourn CC
    Free Radic Biol Med; 2003 Nov; 35(10):1252-60. PubMed ID: 14607524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid.
    Stacey MM; Cuddihy SL; Hampton MB; Winterbourn CC
    Arch Biochem Biophys; 2012 Nov; 527(1):45-54. PubMed ID: 22874433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of peroxynitrite damage to tubulin by the thioredoxin reductase system.
    Landino LM; Iwig JS; Kennett KL; Moynihan KL
    Free Radic Biol Med; 2004 Feb; 36(4):497-506. PubMed ID: 14975452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines.
    Summers FA; Morgan PE; Davies MJ; Hawkins CL
    Chem Res Toxicol; 2008 Sep; 21(9):1832-40. PubMed ID: 18698849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of 5-thio-2-nitrobenzoic acid, by the biologically relevant oxidants peroxynitrite anion, hydrogen peroxide and hypochlorous acid.
    Landino LM; Mall CB; Nicklay JJ; Dutcher SK; Moynihan KL
    Nitric Oxide; 2008 Feb; 18(1):11-8. PubMed ID: 18023374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine oxidation as a major cause of the functional impairment of oxidized actin.
    Dalle-Donne I; Rossi R; Giustarini D; Gagliano N; Di Simplicio P; Colombo R; Milzani A
    Free Radic Biol Med; 2002 May; 32(9):927-37. PubMed ID: 11978495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of tubulin cysteines by nitric oxide and nitroxyl donors alters tubulin polymerization activity.
    Landino LM; Koumas MT; Mason CE; Alston JA
    Chem Res Toxicol; 2007 Nov; 20(11):1693-700. PubMed ID: 17907787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system.
    Landino LM; Moynihan KL; Todd JV; Kennett KL
    Biochem Biophys Res Commun; 2004 Feb; 314(2):555-60. PubMed ID: 14733943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents.
    Carr AC; Hawkins CL; Thomas SR; Stocker R; Frei B
    Free Radic Biol Med; 2001 Mar; 30(5):526-36. PubMed ID: 11182523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid.
    Colombo G; Clerici M; Altomare A; Rusconi F; Giustarini D; Portinaro N; Garavaglia ML; Rossi R; Dalle-Donne I; Milzani A
    J Proteomics; 2017 Jan; 152():22-32. PubMed ID: 27777179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.