These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21257301)

  • 41. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.
    Bogner JE; Spokas KA; Chanton JP
    J Environ Qual; 2011; 40(3):1010-20. PubMed ID: 21546687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution.
    Narancic T; Verstichel S; Reddy Chaganti S; Morales-Gamez L; Kenny ST; De Wilde B; Babu Padamati R; O'Connor KE
    Environ Sci Technol; 2018 Sep; 52(18):10441-10452. PubMed ID: 30156110
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation kinetic modeling of pro-oxidant filled polypropylene composites under thermophilic composting conditions after abiotic treatment.
    Sable S; Ahuja S; Bhunia H
    Environ Sci Pollut Res Int; 2021 May; 28(17):21231-21244. PubMed ID: 33415629
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.
    Masmoudi F; Bessadok A; Dammak M; Jaziri M; Ammar E
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20904-20914. PubMed ID: 27488705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fate and effect of linuron and metribuzin on the co-composting of green waste and sewage sludge.
    Fountoulakis MS; Makridis L; Pirounaki EK; Chroni C; Kyriacou A; Lasaridi K; Manios T
    Waste Manag; 2010 Jan; 30(1):41-9. PubMed ID: 19783419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Release of micro- and nanoparticles from biodegradable plastic during in situ composting.
    Sintim HY; Bary AI; Hayes DG; English ME; Schaeffer SM; Miles CA; Zelenyuk A; Suski K; Flury M
    Sci Total Environ; 2019 Jul; 675():686-693. PubMed ID: 31039503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the presence of improper materials in the composting process performed in ten MBT plants.
    Montejo C; Ramos P; Costa C; Márquez MC
    Bioresour Technol; 2010 Nov; 101(21):8267-72. PubMed ID: 20594823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Abundance of polymers degrading microorganisms in a sea-based solid waste disposal site.
    Ishigaki T; Sugano W; Ike M; Kawagoshi Y; Fukunaga I; Fujita M
    J Basic Microbiol; 2000; 40(3):177-86. PubMed ID: 10957959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological degradation of PVA/CH blends in terrestrial and aquatic conditions.
    Lesinský D; Fritz J; Braun R
    Bioresour Technol; 2005 Jan; 96(2):197-201. PubMed ID: 15381216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradation of chemicals in a standardized test and in environmental conditions.
    Ahtiainen J; Aalto M; Pessala P
    Chemosphere; 2003 May; 51(6):529-37. PubMed ID: 12615106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method for measuring the anoxic biodegradability under denitrifying conditions.
    Vázquez-Rodríguez GA; Beltrán-Hernández RI; Lucho-Constantino CA; Blasco JL
    Chemosphere; 2008 Apr; 71(7):1363-8. PubMed ID: 18096201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.
    Ahn HK; Huda MS; Smith MC; Mulbry W; Schmidt WF; Reeves JB
    Bioresour Technol; 2011 Apr; 102(7):4930-3. PubMed ID: 21320772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradability and mechanical properties of starch films from Andean crops.
    Torres FG; Troncoso OP; Torres C; Díaz DA; Amaya E
    Int J Biol Macromol; 2011 May; 48(4):603-6. PubMed ID: 21300087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating the Ready Biodegradability of Biodegradable Plastics.
    Nabeoka R; Suzuki H; Akasaka Y; Ando N; Yoshida T
    Environ Toxicol Chem; 2021 Sep; 40(9):2443-2449. PubMed ID: 34003509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An integrated biochemical and physical model for the composting process.
    Sole-Mauri F; Illa J; Magrí A; Prenafeta-Boldú FX; Flotats X
    Bioresour Technol; 2007 Dec; 98(17):3278-93. PubMed ID: 16949816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hazard identification of pharmaceutical wastewaters using biodegradability studies.
    Zgajnar Gotvajn A; Zagorc-Koncan J
    Water Sci Technol; 2003; 47(10):197-204. PubMed ID: 12862236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sanitation composting process in different seasons. Ascaris suum as model.
    Szabová E; Juris P; Papajová I
    Waste Manag; 2010 Mar; 30(3):426-32. PubMed ID: 19932605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Encapsulation and sustained release of a model drug, indomethacin, using CO(2)-based microencapsulation.
    Liu H; Finn N; Yates MZ
    Langmuir; 2005 Jan; 21(1):379-85. PubMed ID: 15620328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste.
    Komilis DP; Ham RK
    Waste Manag; 2006; 26(1):62-70. PubMed ID: 16287599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.