These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 2125739)
1. [Viability of Bacillus subtilis auxotrophs in the absence of their essential metabolites]. Franco MA; Santillán MA; de Torres RA; D'Aquino M Rev Argent Microbiol; 1990; 22(1):1-6. PubMed ID: 2125739 [TBL] [Abstract][Full Text] [Related]
2. [Bacillus subtilis BSA 170 trp- ura-: a new nutritional mutant with absolute requirements for exogenous tryptophan and uracil for its growth]. Franco MA; de Torres RA; D'Aquino M Rev Argent Microbiol; 1982; 14(3):167-70. PubMed ID: 6821521 [TBL] [Abstract][Full Text] [Related]
3. Effects of tryptophan starvation on levels of the trp RNA-binding attenuation protein (TRAP) and anti-TRAP regulatory protein and their influence on trp operon expression in Bacillus subtilis. Yang WJ; Yanofsky C J Bacteriol; 2005 Mar; 187(6):1884-91. PubMed ID: 15743934 [TBL] [Abstract][Full Text] [Related]
4. Tryptophanless death in Bacillus subtilis. Majerfeld I; Barlati S; Ciferri O J Bacteriol; 1970 Feb; 101(2):350-4. PubMed ID: 4189906 [TBL] [Abstract][Full Text] [Related]
5. Partial characterization of the factor responsible for tryptophanless death in Bacillus subtilis. Barlati S; Majerfeld I J Bacteriol; 1970 Feb; 101(2):355-60. PubMed ID: 4984070 [TBL] [Abstract][Full Text] [Related]
6. Death of Bacillus subtilis Auxotrophs Due to Deprivation of Thymine, Tryptophan, or Uracil. Pritikin WB; Romig WR J Bacteriol; 1966 Aug; 92(2):291-6. PubMed ID: 16562109 [TBL] [Abstract][Full Text] [Related]
7. Global gene expression profiling of Bacillus subtilis in response to ammonium and tryptophan starvation as revealed by transcriptome and proteome analysis. Tam le T; Eymann C; Antelmann H; Albrecht D; Hecker M J Mol Microbiol Biotechnol; 2007; 12(1-2):121-30. PubMed ID: 17183219 [TBL] [Abstract][Full Text] [Related]
8. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Tam le T; Antelmann H; Eymann C; Albrecht D; Bernhardt J; Hecker M Proteomics; 2006 Aug; 6(16):4565-85. PubMed ID: 16847875 [TBL] [Abstract][Full Text] [Related]
9. Development of Bacillus subtilis mutants to produce tryptophan in pigs. Bjerre K; Cantor MD; Nørgaard JV; Poulsen HD; Blaabjerg K; Canibe N; Jensen BB; Stuer-Lauridsen B; Nielsen B; Derkx PM Biotechnol Lett; 2017 Feb; 39(2):289-295. PubMed ID: 27812824 [TBL] [Abstract][Full Text] [Related]
10. Cyclophilin and trigger factor from Bacillus subtilis catalyze in vitro protein folding and are necessary for viability under starvation conditions. Göthel SF; Scholz C; Schmid FX; Marahiel MA Biochemistry; 1998 Sep; 37(38):13392-9. PubMed ID: 9748346 [TBL] [Abstract][Full Text] [Related]
11. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. Nishimura K; Johansen SK; Inaoka T; Hosaka T; Tokuyama S; Tahara Y; Okamoto S; Kawamura F; Douthwaite S; Ochi K J Bacteriol; 2007 Aug; 189(16):6068-73. PubMed ID: 17573471 [TBL] [Abstract][Full Text] [Related]
12. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Antelmann H; Bernhardt J; Schmid R; Mach H; Völker U; Hecker M Electrophoresis; 1997 Aug; 18(8):1451-63. PubMed ID: 9298659 [TBL] [Abstract][Full Text] [Related]
13. Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains. Chollet-Imbert M; Gancel F; Slomianny C; Jacques P Arch Microbiol; 2009 Jan; 191(1):63-71. PubMed ID: 18795262 [TBL] [Abstract][Full Text] [Related]
14. MscL of Bacillus subtilis prevents selective release of cytoplasmic proteins in a hypotonic environment. Kouwen TR; Antelmann H; van der Ploeg R; Denham EL; Hecker M; van Dijl JM Proteomics; 2009 Feb; 9(4):1033-43. PubMed ID: 19160392 [TBL] [Abstract][Full Text] [Related]
15. Influence of induced fit in the interaction of Bacillus subtilis trp RNA-binding attenuator protein and its RNA antiterminator target oligomer. Flynn PF; Wendt A; Gollnick P Proteins; 2002 Dec; 49(4):432-8. PubMed ID: 12402353 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of bacterial flagella. I. Requirement for protein and ribonucleic acid synthesis during flagellar regeneration in Bacillus subtilis. Dimmitt K; Bradford S; Simon M J Bacteriol; 1968 Mar; 95(3):801-10. PubMed ID: 4966826 [TBL] [Abstract][Full Text] [Related]
17. [The amount and localization of regulatory proteins TnrA and GlnK in Bacillus subtilis cells under nitrogen starvation conditions]. Kaiumov AR; Fedorova KP; Il'inskaia ON; Sharipova MR Mol Biol (Mosk); 2010; 44(4):743-5. PubMed ID: 20873235 [No Abstract] [Full Text] [Related]
18. A 3-deazauracil-resistant mutant of Bacillus subtilis with increased production of cytidine. Asahi S; Tsunemi Y; Izawa M; Doi M Biosci Biotechnol Biochem; 1995 May; 59(5):915-6. PubMed ID: 7787306 [TBL] [Abstract][Full Text] [Related]
19. Incorporation of 5-methyl- and 5-hydroxy-tryptophan into the protein of Bacillus subtilis. Barlati S; Ciferri O J Bacteriol; 1970 Jan; 101(1):166-72. PubMed ID: 4983645 [TBL] [Abstract][Full Text] [Related]
20. Increase in arginine and citrulline production by 6-azauracil-resistant mutants of Bacillus subtilis. Kato J; Kisumi M; Takagi T; Chibata I Appl Environ Microbiol; 1977 Dec; 34(6):689-94. PubMed ID: 202194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]