These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 21257612)

  • 1. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy.
    Abel ED; Doenst T
    Cardiovasc Res; 2011 May; 90(2):234-42. PubMed ID: 21257612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy.
    Yang D; Liu HQ; Liu FY; Guo Z; An P; Wang MY; Yang Z; Fan D; Tang QZ
    Front Cardiovasc Med; 2021; 8():822969. PubMed ID: 35118147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria in cardiac hypertrophy and heart failure.
    Rosca MG; Tandler B; Hoppel CL
    J Mol Cell Cardiol; 2013 Feb; 55():31-41. PubMed ID: 22982369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of physiological and pathological cardiac hypertrophy.
    Nakamura M; Sadoshima J
    Nat Rev Cardiol; 2018 Jul; 15(7):387-407. PubMed ID: 29674714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial adaptations during myocardial hypertrophy induced by abdominal aortic constriction.
    Mei Z; Wang X; Liu W; Gong J; Gao X; Zhang T; Xie F; Qian L
    Cardiovasc Pathol; 2014; 23(5):283-8. PubMed ID: 24972527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Is secondary myocardial hypertrophy a physiological or pathological adaptive mechanism?].
    Krayenbühl HP
    Z Kardiol; 1982 Aug; 71(8):489-96. PubMed ID: 6215776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy.
    McMullen JR; Shioi T; Zhang L; Tarnavski O; Sherwood MC; Kang PM; Izumo S
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12355-60. PubMed ID: 14507992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for the transition from physiological to pathological cardiac hypertrophy.
    Oldfield CJ; Duhamel TA; Dhalla NS
    Can J Physiol Pharmacol; 2020 Feb; 98(2):74-84. PubMed ID: 31815523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure.
    McMullen JR; Jennings GL
    Clin Exp Pharmacol Physiol; 2007 Apr; 34(4):255-62. PubMed ID: 17324134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria and Cardiac Hypertrophy.
    Facundo HDTF; Brainard RE; Caldas FRL; Lucas AMB
    Adv Exp Med Biol; 2017; 982():203-226. PubMed ID: 28551789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy.
    Goffart S; von Kleist-Retzow JC; Wiesner RJ
    Cardiovasc Res; 2004 Nov; 64(2):198-207. PubMed ID: 15485678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in mitochondrial function in cardiac hypertrophy and heart failure.
    Osterholt M; Nguyen TD; Schwarzer M; Doenst T
    Heart Fail Rev; 2013 Sep; 18(5):645-56. PubMed ID: 22968404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway.
    Shiojima I; Walsh K
    Genes Dev; 2006 Dec; 20(24):3347-65. PubMed ID: 17182864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innate Immune Nod1/RIP2 Signaling Is Essential for Cardiac Hypertrophy but Requires Mitochondrial Antiviral Signaling Protein for Signal Transductions and Energy Balance.
    Lin HB; Naito K; Oh Y; Farber G; Kanaan G; Valaperti A; Dawood F; Zhang L; Li GH; Smyth D; Moon M; Liu Y; Liang W; Rotstein B; Philpott DJ; Kim KH; Harper ME; Liu PP
    Circulation; 2020 Dec; 142(23):2240-2258. PubMed ID: 33070627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload - role of respiratory chain complex activity.
    Schrepper A; Schwarzer M; Schöpe M; Amorim PA; Doenst T
    J Mol Cell Cardiol; 2012 Jan; 52(1):125-35. PubMed ID: 22100228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.
    Moreira-Gonçalves D; Henriques-Coelho T; Fonseca H; Ferreira R; Padrão AI; Santa C; Vieira S; Silva AF; Amado F; Leite-Moreira A; Duarte JA
    J Physiol; 2015 Sep; 593(17):3885-97. PubMed ID: 26010517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial function in cardiac hypertrophy.
    Zhou LY; Liu JP; Wang K; Gao J; Ding SL; Jiao JQ; Li PF
    Int J Cardiol; 2013 Aug; 167(4):1118-25. PubMed ID: 23044430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy.
    Liu BL; Cheng M; Hu S; Wang S; Wang L; Tu X; Huang CX; Jiang H; Wu G
    Biomed Pharmacother; 2018 Dec; 108():1347-1356. PubMed ID: 30372837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria in Structural and Functional Cardiac Remodeling.
    Torrealba N; Aranguiz P; Alonso C; Rothermel BA; Lavandero S
    Adv Exp Med Biol; 2017; 982():277-306. PubMed ID: 28551793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.
    Bernardo BC; Weeks KL; Pretorius L; McMullen JR
    Pharmacol Ther; 2010 Oct; 128(1):191-227. PubMed ID: 20438756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.