BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

697 related articles for article (PubMed ID: 21257639)

  • 21. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons.
    Chang DT; Rintoul GL; Pandipati S; Reynolds IJ
    Neurobiol Dis; 2006 May; 22(2):388-400. PubMed ID: 16473015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum.
    Mende-Mueller LM; Toneff T; Hwang SR; Chesselet MF; Hook VY
    J Neurosci; 2001 Mar; 21(6):1830-7. PubMed ID: 11245667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
    Chaturvedi RK; Hennessey T; Johri A; Tiwari SK; Mishra D; Agarwal S; Kim YS; Beal MF
    Hum Mol Genet; 2012 Aug; 21(15):3474-88. PubMed ID: 22589249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity.
    Song W; Chen J; Petrilli A; Liot G; Klinglmayr E; Zhou Y; Poquiz P; Tjong J; Pouladi MA; Hayden MR; Masliah E; Ellisman M; Rouiller I; Schwarzenbacher R; Bossy B; Perkins G; Bossy-Wetzel E
    Nat Med; 2011 Mar; 17(3):377-82. PubMed ID: 21336284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Huntington's disease.
    Roze E; Bonnet C; Betuing S; Caboche J
    Adv Exp Med Biol; 2010; 685():45-63. PubMed ID: 20687494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice.
    Boudreau RL; McBride JL; Martins I; Shen S; Xing Y; Carter BJ; Davidson BL
    Mol Ther; 2009 Jun; 17(6):1053-63. PubMed ID: 19240687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease.
    Siddiqui A; Rivera-Sánchez S; Castro Mdel R; Acevedo-Torres K; Rane A; Torres-Ramos CA; Nicholls DG; Andersen JK; Ayala-Torres S
    Free Radic Biol Med; 2012 Oct; 53(7):1478-88. PubMed ID: 22709585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial structural and functional dynamics in Huntington's disease.
    Reddy PH; Mao P; Manczak M
    Brain Res Rev; 2009 Jun; 61(1):33-48. PubMed ID: 19394359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration.
    Dong X; Zong S; Witting A; Lindenberg KS; Kochanek S; Huang B
    J Gene Med; 2012 Jul; 14(7):468-81. PubMed ID: 22700462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease.
    Joshi AU; Ebert AE; Haileselassie B; Mochly-Rosen D
    J Mol Cell Cardiol; 2019 Feb; 127():125-133. PubMed ID: 30550751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.
    Thomas EA; Coppola G; Tang B; Kuhn A; Kim S; Geschwind DH; Brown TB; Luthi-Carter R; Ehrlich ME
    Hum Mol Genet; 2011 Mar; 20(6):1049-60. PubMed ID: 21177255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin.
    Damiano M; Diguet E; Malgorn C; D'Aurelio M; Galvan L; Petit F; Benhaim L; Guillermier M; Houitte D; Dufour N; Hantraye P; Canals JM; Alberch J; Delzescaux T; Déglon N; Beal MF; Brouillet E
    Hum Mol Genet; 2013 Oct; 22(19):3869-82. PubMed ID: 23720495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggregation in Huntington's disease: insights through modelling.
    Cajavec B; Bernard S; Herzel H
    Genome Inform; 2005; 16(1):262-71. PubMed ID: 16362929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-κB from the synapse to the nucleus.
    Marcora E; Kennedy MB
    Hum Mol Genet; 2010 Nov; 19(22):4373-84. PubMed ID: 20739295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability.
    Fu Z; Liu F; Liu C; Jin B; Jiang Y; Tang M; Qi X; Guo X
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1428-1435. PubMed ID: 30802639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.
    Clemens LE; Weber JJ; Wlodkowski TT; Yu-Taeger L; Michaud M; Calaminus C; Eckert SH; Gaca J; Weiss A; Magg JC; Jansson EK; Eckert GP; Pichler BJ; Bordet T; Pruss RM; Riess O; Nguyen HP
    Brain; 2015 Dec; 138(Pt 12):3632-53. PubMed ID: 26490331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease.
    Petrasch-Parwez E; Nguyen HP; Löbbecke-Schumacher M; Habbes HW; Wieczorek S; Riess O; Andres KH; Dermietzel R; Von Hörsten S
    J Comp Neurol; 2007 Apr; 501(5):716-30. PubMed ID: 17299753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics.
    Naia L; Carmo C; Campesan S; Fão L; Cotton VE; Valero J; Lopes C; Rosenstock TR; Giorgini F; Rego AC
    Free Radic Biol Med; 2021 Feb; 163():163-179. PubMed ID: 33285261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein.
    Aladdin A; Király R; Boto P; Regdon Z; Tar K
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.