These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oxidative stress and sarcomeric proteins. Steinberg SF Circ Res; 2013 Jan; 112(2):393-405. PubMed ID: 23329794 [TBL] [Abstract][Full Text] [Related]
3. Thematic minireview series on signaling in cardiac sarcomeres in health and disease. Solaro RJ; Stull JT J Biol Chem; 2011 Mar; 286(12):9895. PubMed ID: 21257756 [No Abstract] [Full Text] [Related]
5. Mitochondrial dysfunction and oxidative damage to sarcomeric proteins. Bayeva M; Ardehali H Curr Hypertens Rep; 2010 Dec; 12(6):426-32. PubMed ID: 20865351 [TBL] [Abstract][Full Text] [Related]
6. H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling. Avner BS; Hinken AC; Yuan C; Solaro RJ Am J Physiol Heart Circ Physiol; 2010 Sep; 299(3):H723-30. PubMed ID: 20562337 [TBL] [Abstract][Full Text] [Related]
7. Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. Yang KC; Chuang KW; Yen WS; Lin SY; Chen HH; Chang SW; Lin YS; Wu WL; Tsao YP; Chen WP; Chen SL J Mol Cell Cardiol; 2019 Dec; 137():9-24. PubMed ID: 31629737 [TBL] [Abstract][Full Text] [Related]
8. ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca(2+) overload and contractile dysfunction via the JAK2/STAT3 pathway. Wu L; Tan JL; Wang ZH; Chen YX; Gao L; Liu JL; Shi YH; Endoh M; Yang HT J Mol Cell Cardiol; 2015 Apr; 81():150-61. PubMed ID: 25731682 [TBL] [Abstract][Full Text] [Related]
9. Insights into alternative splicing of sarcomeric genes in the heart. Weeland CJ; van den Hoogenhof MM; Beqqali A; Creemers EE J Mol Cell Cardiol; 2015 Apr; 81():107-13. PubMed ID: 25683494 [TBL] [Abstract][Full Text] [Related]
10. The interaction of Ca2+ with sarcomeric proteins: role in function and dysfunction of the heart. ter Keurs HE Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H38-50. PubMed ID: 22021327 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Climent M; Viggiani G; Chen YW; Coulis G; Castaldi A Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575472 [TBL] [Abstract][Full Text] [Related]
12. Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Takano H; Zou Y; Hasegawa H; Akazawa H; Nagai T; Komuro I Antioxid Redox Signal; 2003 Dec; 5(6):789-94. PubMed ID: 14588152 [TBL] [Abstract][Full Text] [Related]
13. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. van der Velden J; Stienen GJM Physiol Rev; 2019 Jan; 99(1):381-426. PubMed ID: 30379622 [TBL] [Abstract][Full Text] [Related]
14. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. D'Oria R; Schipani R; Leonardini A; Natalicchio A; Perrini S; Cignarelli A; Laviola L; Giorgino F Oxid Med Cell Longev; 2020; 2020():5732956. PubMed ID: 32509147 [TBL] [Abstract][Full Text] [Related]
15. Cardiac Myosin-binding Protein C and Troponin-I Phosphorylation Independently Modulate Myofilament Length-dependent Activation. Kumar M; Govindan S; Zhang M; Khairallah RJ; Martin JL; Sadayappan S; de Tombe PP J Biol Chem; 2015 Dec; 290(49):29241-9. PubMed ID: 26453301 [TBL] [Abstract][Full Text] [Related]
16. Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential. Thompson BR; Metzger JM Anat Rec (Hoboken); 2014 Sep; 297(9):1663-9. PubMed ID: 25125179 [TBL] [Abstract][Full Text] [Related]
17. Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating pathology. Hool LC Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):229-34. PubMed ID: 18197892 [TBL] [Abstract][Full Text] [Related]