These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 21257817)
1. Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Raab AM; Hlavacek V; Bolotina N; Lang C Appl Environ Microbiol; 2011 Mar; 77(6):1981-9. PubMed ID: 21257817 [TBL] [Abstract][Full Text] [Related]
2. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359 [TBL] [Abstract][Full Text] [Related]
3. Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Blom J; De Mattos MJ; Grivell LA Appl Environ Microbiol; 2000 May; 66(5):1970-3. PubMed ID: 10788368 [TBL] [Abstract][Full Text] [Related]
4. Hap4 is not essential for activation of respiration at low specific growth rates in Saccharomyces cerevisiae. Raghevendran V; Patil KR; Olsson L; Nielsen J J Biol Chem; 2006 May; 281(18):12308-14. PubMed ID: 16522629 [TBL] [Abstract][Full Text] [Related]
5. Physiological and transcriptional characterization of Saccharomyces cerevisiae strains with modified expression of catabolic regulators. Schuurmans JM; Boorsma A; Lascaris R; Hellingwerf KJ; Teixeira de Mattos MJ FEMS Yeast Res; 2008 Feb; 8(1):26-34. PubMed ID: 17892474 [TBL] [Abstract][Full Text] [Related]
6. Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae. Schuurmans JM; Rossell SL; van Tuijl A; Bakker BM; Hellingwerf KJ; Teixeira de Mattos MJ FEMS Yeast Res; 2008 Mar; 8(2):195-203. PubMed ID: 18179578 [TBL] [Abstract][Full Text] [Related]
7. Bhondeley M; Liu Z Genes (Basel); 2024 Aug; 15(9):. PubMed ID: 39336719 [TBL] [Abstract][Full Text] [Related]
8. Protein kinases Elm1 and Sak1 of Saccharomyces cerevisiae exerted different functions under high-glucose and heat shock stresses. Wang L; Yang X; Jiang HY; Song ZM; Lin X; Hu XP; Li CF Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2029-2042. PubMed ID: 35194654 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. Bonander N; Ferndahl C; Mostad P; Wilks MD; Chang C; Showe L; Gustafsson L; Larsson C; Bill RM BMC Genomics; 2008 Jul; 9():365. PubMed ID: 18671860 [TBL] [Abstract][Full Text] [Related]
10. Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor. Petryk N; Zhou YF; Sybirna K; Mucchielli MH; Guiard B; Bao WG; Stasyk OV; Stasyk OG; Krasovska OS; Budin K; Reymond N; Imbeaud S; Coudouel S; Delacroix H; Sibirny A; Bolotin-Fukuhara M PLoS One; 2014; 9(12):e112263. PubMed ID: 25479159 [TBL] [Abstract][Full Text] [Related]
11. Interaction of SNF1 protein kinase with its activating kinase Sak1. Liu Y; Xu X; Carlson M Eukaryot Cell; 2011 Mar; 10(3):313-9. PubMed ID: 21216941 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes. Lascaris R; Piwowarski J; van der Spek H; de Mattos JT; Grivell L; Blom J Microbiology (Reading); 2004 Apr; 150(Pt 4):929-934. PubMed ID: 15073302 [TBL] [Abstract][Full Text] [Related]
13. Increased biomass production of industrial bakers' yeasts by overexpression of Hap4 gene. Dueñas-Sánchez R; Codón AC; Rincón AM; Benítez T Int J Food Microbiol; 2010 Oct; 143(3):150-60. PubMed ID: 20832886 [TBL] [Abstract][Full Text] [Related]
14. Dissection of the promoter of the HAP4 gene in S. cerevisiae unveils a complex regulatory framework of transcriptional regulation. Brons JF; De Jong M; Valens M; Grivell LA; Bolotin-Fukuhara M; Blom J Yeast; 2002 Aug; 19(11):923-32. PubMed ID: 12125049 [TBL] [Abstract][Full Text] [Related]
15. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression. Zhang T; Bu P; Zeng J; Vancura A J Biol Chem; 2017 Oct; 292(41):16942-16954. PubMed ID: 28830930 [TBL] [Abstract][Full Text] [Related]
16. Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae. Orlova M; Ozcetin H; Barrett L; Kuchin S Eukaryot Cell; 2010 Jan; 9(1):208-14. PubMed ID: 19880754 [TBL] [Abstract][Full Text] [Related]
17. Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein. Stebbins JL; Triezenberg SJ Eukaryot Cell; 2004 Apr; 3(2):339-47. PubMed ID: 15075264 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth. Galello F; Pautasso C; Reca S; Cañonero L; Portela P; Moreno S; Rossi S Yeast; 2017 Dec; 34(12):495-508. PubMed ID: 28812308 [TBL] [Abstract][Full Text] [Related]
19. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Lascaris R; Bussemaker HJ; Boorsma A; Piper M; van der Spek H; Grivell L; Blom J Genome Biol; 2003; 4(1):R3. PubMed ID: 12537548 [TBL] [Abstract][Full Text] [Related]
20. HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis. Bourgarel D; Nguyen CC; Bolotin-Fukuhara M Mol Microbiol; 1999 Feb; 31(4):1205-15. PubMed ID: 10096087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]