BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21258147)

  • 1. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.
    Marches R; Mikoryak C; Wang RH; Pantano P; Draper RK; Vitetta ES
    Nanotechnology; 2011 Mar; 22(9):095101. PubMed ID: 21258147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody.
    Wang CH; Huang YJ; Chang CW; Hsu WM; Peng CA
    Nanotechnology; 2009 Aug; 20(31):315101. PubMed ID: 19597244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies.
    Marches R; Chakravarty P; Musselman IH; Bajaj P; Azad RN; Pantano P; Draper RK; Vitetta ES
    Int J Cancer; 2009 Dec; 125(12):2970-7. PubMed ID: 19536775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate.
    Oraki Kohshour M; Mirzaie S; Zeinali M; Amin M; Said Hakhamaneshi M; Jalili A; Mosaveri N; Jamalan M
    Chem Biol Drug Des; 2014 Mar; 83(3):259-65. PubMed ID: 24118702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes.
    Chakravarty P; Marches R; Zimmerman NS; Swafford AD; Bajaj P; Musselman IH; Pantano P; Draper RK; Vitetta ES
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8697-702. PubMed ID: 18559847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters.
    Kim JW; Shashkov EV; Galanzha EI; Kotagiri N; Zharov VP
    Lasers Surg Med; 2007 Aug; 39(7):622-34. PubMed ID: 17868103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies.
    Burlaka A; Lukin S; Prylutska S; Remeniak O; Prylutskyy Y; Shuba M; Maksimenko S; Ritter U; Scharff P
    Exp Oncol; 2010 Mar; 32(1):48-50. PubMed ID: 20332757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer.
    Prickett WM; Van Rite BD; Resasco DE; Harrison RG
    Nanotechnology; 2011 Nov; 22(45):455101. PubMed ID: 21993223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite.
    Hashida Y; Tanaka H; Zhou S; Kawakami S; Yamashita F; Murakami T; Umeyama T; Imahori H; Hashida M
    J Control Release; 2014 Jan; 173():59-66. PubMed ID: 24211651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells.
    Gobin AM; Moon JJ; West JL
    Int J Nanomedicine; 2008; 3(3):351-8. PubMed ID: 18990944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.
    Markovic ZM; Harhaji-Trajkovic LM; Todorovic-Markovic BM; Kepić DP; Arsikin KM; Jovanović SP; Pantovic AC; Dramićanin MD; Trajkovic VS
    Biomaterials; 2011 Feb; 32(4):1121-9. PubMed ID: 21071083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction.
    Weng X; Wang M; Ge J; Yu S; Liu B; Zhong J; Kong J
    Mol Biosyst; 2009 Oct; 5(10):1224-31. PubMed ID: 19756312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models.
    Kirpotin DB; Drummond DC; Shao Y; Shalaby MR; Hong K; Nielsen UB; Marks JD; Benz CC; Park JW
    Cancer Res; 2006 Jul; 66(13):6732-40. PubMed ID: 16818648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.
    Zhou F; Xing D; Ou Z; Wu B; Resasco DE; Chen WR
    J Biomed Opt; 2009; 14(2):021009. PubMed ID: 19405722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonionic, water self-dispersible "hairy-rod" poly(p-phenylene)-g-poly(ethylene glycol) copolymer/carbon nanotube conjugates for targeted cell imaging.
    Yuksel M; Colak DG; Akin M; Cianga I; Kukut M; Medine EI; Can M; Sakarya S; Unak P; Timur S; Yagci Y
    Biomacromolecules; 2012 Sep; 13(9):2680-91. PubMed ID: 22866988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized polymeric nanoparticles loaded with indocyanine green as theranostic materials for targeted molecular near infrared fluorescence imaging and photothermal destruction of ovarian cancer cells.
    Bahmani B; Guerrero Y; Bacon D; Kundra V; Vullev VI; Anvari B
    Lasers Surg Med; 2014 Sep; 46(7):582-92. PubMed ID: 24961210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.