These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. Harada S; Yamazaki Y; Koda S; Tokuyama S PLoS One; 2014; 9(4):e95433. PubMed ID: 24759941 [TBL] [Abstract][Full Text] [Related]
4. [Role of orexin-A-mediated communication system between brain and peripheral tissues on the development of post-ischemic glucose intolerance-induced neuronal damage]. Harada S Yakugaku Zasshi; 2014; 134(10):1055-60. PubMed ID: 25274216 [TBL] [Abstract][Full Text] [Related]
5. Ameliorating effect of hypothalamic brain-derived neurotrophic factor against impaired glucose metabolism after cerebral ischemic stress in mice. Harada S; Fujita-Hamabe W; Tokuyama S J Pharmacol Sci; 2012; 118(1):109-16. PubMed ID: 22198007 [TBL] [Abstract][Full Text] [Related]
6. Post-ischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage through the cerebral sodium-glucose transporter. Yamazaki Y; Harada S; Tokuyama S Brain Res; 2012 Dec; 1489():113-20. PubMed ID: 23078759 [TBL] [Abstract][Full Text] [Related]
7. The development of glucose intolerance after focal cerebral ischemia participates in subsequent neuronal damage. Harada S; Fujita WH; Shichi K; Tokuyama S Brain Res; 2009 Jul; 1279():174-81. PubMed ID: 19445903 [TBL] [Abstract][Full Text] [Related]
8. Honokiol suppresses the development of post-ischemic glucose intolerance and neuronal damage in mice. Harada S; Kishimoto M; Kobayashi M; Nakamoto K; Fujita-Hamabe W; Chen HH; Chan MH; Tokuyama S J Nat Med; 2012 Oct; 66(4):591-9. PubMed ID: 22261858 [TBL] [Abstract][Full Text] [Related]
9. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Kitamura E; Hamada J; Kanazawa N; Yonekura J; Masuda R; Sakai F; Mochizuki H Neurosci Res; 2010 Oct; 68(2):154-7. PubMed ID: 20600373 [TBL] [Abstract][Full Text] [Related]
10. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Tsuneki H; Tokai E; Nakamura Y; Takahashi K; Fujita M; Asaoka T; Kon K; Anzawa Y; Wada T; Takasaki I; Kimura K; Inoue H; Yanagisawa M; Sakurai T; Sasaoka T Diabetes; 2015 Feb; 64(2):459-70. PubMed ID: 25249578 [TBL] [Abstract][Full Text] [Related]
11. Morinda citrifolia fruit juice prevents ischemic neuronal damage through suppression of the development of post-ischemic glucose intolerance. Harada S; Fujita-Hamabe W; Kamiya K; Mizushina Y; Satake T; Tokuyama S J Nat Med; 2010 Oct; 64(4):468-73. PubMed ID: 20574728 [TBL] [Abstract][Full Text] [Related]
12. [Effectiveness of metformin in prevention of development of hyperglycemia and neuronal damage caused by ischemic stress]. Fujita-Hamabe W; Harada S; Tokuyama S Yakugaku Zasshi; 2011 Apr; 131(4):533-8. PubMed ID: 21467792 [TBL] [Abstract][Full Text] [Related]
13. Sodium-glucose transporter type 3-mediated neuroprotective effect of acetylcholine suppresses the development of cerebral ischemic neuronal damage. Yamazaki Y; Harada S; Tokuyama S Neuroscience; 2014 Jun; 269():134-42. PubMed ID: 24699226 [TBL] [Abstract][Full Text] [Related]
14. [Involvement of glycemic control in the inhibiting effect of Morinda citrifolia on cerebral ischemia-induced neuronal damage]. Harada S; Fujita-Hamabe W; Kamiya K; Satake T; Tokuyama S Yakugaku Zasshi; 2010 May; 130(5):707-12. PubMed ID: 20460868 [TBL] [Abstract][Full Text] [Related]
15. Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice. Tsuneki H; Murata S; Anzawa Y; Soeda Y; Tokai E; Wada T; Kimura I; Yanagisawa M; Sakurai T; Sasaoka T Diabetologia; 2008 Apr; 51(4):657-67. PubMed ID: 18256806 [TBL] [Abstract][Full Text] [Related]
16. The effect of porcine Orexin A on insulin plasma concentrations in pigs. Papakonstantinou P; Tziris N; Kesisoglou I; Gotzamani-Psarrakou A; Tsonidis C; Patsikas MN; Papazoglou LG J Biol Regul Homeost Agents; 2007; 21(3-4):115-24. PubMed ID: 18261263 [TBL] [Abstract][Full Text] [Related]
17. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Muroya S; Funahashi H; Yamanaka A; Kohno D; Uramura K; Nambu T; Shibahara M; Kuramochi M; Takigawa M; Yanagisawa M; Sakurai T; Shioda S; Yada T Eur J Neurosci; 2004 Mar; 19(6):1524-34. PubMed ID: 15066149 [TBL] [Abstract][Full Text] [Related]
18. Reduction of blood glucose level by orexins in fasting normal and streptozotocin-diabetic mice. Tsuneki H; Sugihara Y; Honda R; Wada T; Sasaoka T; Kimura I Eur J Pharmacol; 2002 Jul; 448(2-3):245-52. PubMed ID: 12144948 [TBL] [Abstract][Full Text] [Related]
19. Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. Yamazaki Y; Ogihara S; Harada S; Tokuyama S Neuroscience; 2015 Dec; 310():674-85. PubMed ID: 26454021 [TBL] [Abstract][Full Text] [Related]
20. Actions of orexins on individual myenteric neurons of the guinea-pig ileum: orexin A or B? Katayama Y; Hirai K; Homma T; Noda Y; Honda K Neuroreport; 2005 May; 16(7):745-9. PubMed ID: 15858418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]