These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21258352)

  • 1. Single dopants in semiconductors.
    Koenraad PM; Flatté ME
    Nat Mater; 2011 Feb; 10(2):91-100. PubMed ID: 21258352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.
    Prati E; Hori M; Guagliardo F; Ferrari G; Shinada T
    Nat Nanotechnol; 2012 Jul; 7(7):443-7. PubMed ID: 22751223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Excitonic Exchange Splittings at Zero Field in Single Colloidal CdSe Quantum Dots Doped with Individual Mn
    Fainblat R; Barrows CJ; Hopmann E; Siebeneicher S; Vlaskin VA; Gamelin DR; Bacher G
    Nano Lett; 2016 Oct; 16(10):6371-6377. PubMed ID: 27646931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing quantum dots for solotronics.
    Kobak J; Smoleński T; Goryca M; Papaj M; Gietka K; Bogucki A; Koperski M; Rousset JG; Suffczyński J; Janik E; Nawrocki M; Golnik A; Kossacki P; Pacuski W
    Nat Commun; 2014; 5():3191. PubMed ID: 24463946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting excitation and magnetization of individual dopants in a semiconductor.
    Khajetoorians AA; Chilian B; Wiebe J; Schuwalow S; Lechermann F; Wiesendanger R
    Nature; 2010 Oct; 467(7319):1084-7. PubMed ID: 20981095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric-Field-Controlled Dopant Distribution in Organic Semiconductors.
    Müller L; Rhim SY; Sivanesan V; Wang D; Hietzschold S; Reiser P; Mankel E; Beck S; Barlow S; Marder SR; Pucci A; Kowalsky W; Lovrincic R
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atom devices based on single dopants in silicon nanostructures.
    Moraru D; Udhiarto A; Anwar M; Nowak R; Jablonski R; Hamid E; Tarido JC; Mizuno T; Tabe M
    Nanoscale Res Lett; 2011 Jul; 6(1):479. PubMed ID: 21801408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes.
    Hartmann NF; Yalcin SE; Adamska L; Hároz EH; Ma X; Tretiak S; Htoon H; Doorn SK
    Nanoscale; 2015 Dec; 7(48):20521-30. PubMed ID: 26586162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating the Electronic and Optical Properties of Tetragonal ZnSe Monolayers by Chalcogen Dopants.
    Zhou J; Li Y; Wu X; Qin W
    Chemphyschem; 2016 Jul; 17(13):1993-8. PubMed ID: 26972924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorder-driven doping activation in organic semiconductors.
    Fediai A; Emering A; Symalla F; Wenzel W
    Phys Chem Chem Phys; 2020 May; 22(18):10256-10264. PubMed ID: 32352139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.
    Lu Y; Wang JY; Pei J
    Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunneling in Systems of Coupled Dopant-Atoms in Silicon Nano-devices.
    Moraru D; Samanta A; Tyszka K; Anh le T; Muruganathan M; Mizuno T; Jablonski R; Mizuta H; Tabe M
    Nanoscale Res Lett; 2015 Dec; 10(1):372. PubMed ID: 26403925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning manganese dopant spin interactions in single GaN nanowires at room temperature.
    Hegde M; Farvid SS; Hosein ID; Radovanovic PV
    ACS Nano; 2011 Aug; 5(8):6365-73. PubMed ID: 21780752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility enhancement in heavily doped semiconductors via electron cloaking.
    Zhou J; Zhu H; Song Q; Ding Z; Mao J; Ren Z; Chen G
    Nat Commun; 2022 May; 13(1):2482. PubMed ID: 35523766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional semiconductors pave the way towards dopant-based quantum computing.
    Abadillo-Uriel JC; Koiller B; Calderón MJ
    Beilstein J Nanotechnol; 2018; 9():2668-2673. PubMed ID: 30416918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Atom-by-Atom Assembly of Dopants in Silicon.
    Hudak BM; Song J; Sims H; Troparevsky MC; Humble TS; Pantelides ST; Snijders PC; Lupini AR
    ACS Nano; 2018 Jun; 12(6):5873-5879. PubMed ID: 29750507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial metrology of dopants in silicon with exact lattice site precision.
    Usman M; Bocquel J; Salfi J; Voisin B; Tankasala A; Rahman R; Simmons MY; Rogge S; Hollenberg LC
    Nat Nanotechnol; 2016 Sep; 11(9):763-8. PubMed ID: 27271965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Readout of a dopant spin in the anisotropic quantum dot with a single magnetic ion.
    Rodek A; Kazimierczuk T; Bogucki A; Smoleński T; Pacuski W; Kossacki P
    J Phys Condens Matter; 2019 Nov; 31(45):455301. PubMed ID: 31323648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.
    Rahman MA; Rout S; Thomas JP; McGillivray D; Leung KT
    J Am Chem Soc; 2016 Sep; 138(36):11896-906. PubMed ID: 27533277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.