These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1699 related articles for article (PubMed ID: 21258394)
41. PIG3: a novel link between oxidative stress and DNA damage response in cancer. Kotsinas A; Aggarwal V; Tan EJ; Levy B; Gorgoulis VG Cancer Lett; 2012 Dec; 327(1-2):97-102. PubMed ID: 22178897 [TBL] [Abstract][Full Text] [Related]
47. The oncogenic role of HBXIP. Xiu M; Zeng X; Shan R; Wen W; Li J; Wan R Biomed Pharmacother; 2021 Jan; 133():111045. PubMed ID: 33378953 [TBL] [Abstract][Full Text] [Related]
48. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Lv J; Wang J; Chang S; Liu M; Pang X Acta Biochim Biophys Sin (Shanghai); 2016 Jan; 48(1):17-26. PubMed ID: 26487443 [TBL] [Abstract][Full Text] [Related]
49. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Rupaimoole R; Calin GA; Lopez-Berestein G; Sood AK Cancer Discov; 2016 Mar; 6(3):235-46. PubMed ID: 26865249 [TBL] [Abstract][Full Text] [Related]
50. [Even the Warburg effect can be oxidized: metabolic cooperation and tumor development]. Cordier-Bussat M; Thibert C; Sujobert P; Genestier L; Fontaine É; Billaud M Med Sci (Paris); 2018; 34(8-9):701-708. PubMed ID: 30230466 [TBL] [Abstract][Full Text] [Related]
51. Crk at the quarter century mark: perspectives in signaling and cancer. Kumar S; Fajardo JE; Birge RB; Sriram G J Cell Biochem; 2014 May; 115(5):819-25. PubMed ID: 24356912 [TBL] [Abstract][Full Text] [Related]
52. Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer. Jin LH; Wei C Asian Pac J Cancer Prev; 2014; 15(17):7015-9. PubMed ID: 25227784 [TBL] [Abstract][Full Text] [Related]
53. Role of TRP ion channels in cancer and tumorigenesis. Shapovalov G; Ritaine A; Skryma R; Prevarskaya N Semin Immunopathol; 2016 May; 38(3):357-69. PubMed ID: 26842901 [TBL] [Abstract][Full Text] [Related]
54. Connections between metabolism and epigenetics in cancers. Thakur C; Chen F Semin Cancer Biol; 2019 Aug; 57():52-58. PubMed ID: 31185282 [TBL] [Abstract][Full Text] [Related]
55. Pan-organ transcriptome variation across 21 cancer types. Hu W; Yang Y; Li X; Zheng S Oncotarget; 2017 Jan; 8(4):6809-6818. PubMed ID: 28036280 [TBL] [Abstract][Full Text] [Related]
56. Harnessing impaired energy metabolism in cancer cell: small molecule- mediated ways to regulate tumorigenesis. Govardhan KS; Ramyasri K; Kethora D; Ravishekar Y; Prasenjit M Anticancer Agents Med Chem; 2011 Mar; 11(3):272-9. PubMed ID: 21434854 [TBL] [Abstract][Full Text] [Related]
57. Changing mutational and adaptive landscapes and the genesis of cancer. Liggett LA; DeGregori J Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):84-94. PubMed ID: 28167050 [TBL] [Abstract][Full Text] [Related]
58. Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets. Lu J; Zeng H; Liang Z; Chen L; Zhang L; Zhang H; Liu H; Jiang H; Shen B; Huang M; Geng M; Spiegel S; Luo C Sci Rep; 2015 Oct; 5():14739. PubMed ID: 26446703 [TBL] [Abstract][Full Text] [Related]
59. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Dang CV; Le A; Gao P Clin Cancer Res; 2009 Nov; 15(21):6479-83. PubMed ID: 19861459 [TBL] [Abstract][Full Text] [Related]
60. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Di Gregorio E; Miolo G; Saorin A; Steffan A; Corona G Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]