BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21258442)

  • 1. Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue.
    Mo J; Zheng W; Huang Z
    Biomed Opt Express; 2010 Jun; 1(1):17-30. PubMed ID: 21258442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy.
    Wang J; Bergholt MS; Zheng W; Huang Z
    Opt Lett; 2013 Jul; 38(13):2321-3. PubMed ID: 23811915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations.
    Jaillon F; Zheng W; Huang Z
    Phys Med Biol; 2008 Feb; 53(4):937-51. PubMed ID: 18263950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a two-beveled-fiber polarized fiber-optic Raman probe coupled with a ball lens for in vivo superficial epithelial Raman measurements in endoscopy.
    Wang J; Chen S; Zhang R; Lin K; Wang T; Liu W; Zhang A
    Opt Lett; 2023 Sep; 48(18):4885-4888. PubMed ID: 37707928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Half-ball lens couples a beveled fiber probe for depth-resolved spectroscopy: Monte Carlo simulations.
    Jaillon F; Zheng W; Huang Z
    Appl Opt; 2008 Jun; 47(17):3152-7. PubMed ID: 18545288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
    Schwarz RA; Arifler D; Chang SK; Pavlova I; Hussain IA; Mack V; Knight B; Richards-Kortum R; Gillenwater AM
    Opt Lett; 2005 May; 30(10):1159-61. PubMed ID: 15945140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
    Bergholt MS; Duraipandian S; Zheng W; Huang Z
    Anal Chem; 2013 Dec; 85(23):11297-303. PubMed ID: 24160634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High axial resolution Raman probe made of a single hollow optical fiber.
    Katagiri T; Yamamoto YS; Ozaki Y; Matsuura Y; Sato H
    Appl Spectrosc; 2009 Jan; 63(1):103-7. PubMed ID: 19146726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microlensed dual-fiber probe for depth-resolved fluorescence measurements.
    Choi HY; Ryu SY; Kim JY; Kim GH; Park SJ; Lee BH; Chang KS
    Opt Express; 2011 Jul; 19(15):14172-81. PubMed ID: 21934780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a coaxial DCF-GRIN fiberoptic Raman probe for enhancing in vivo epithelial tissue Raman measurements.
    Heng HPS; Shu C; Zheng W; Huang Z
    Opt Lett; 2022 Nov; 47(22):5989-5992. PubMed ID: 37219154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe.
    Schwarz RA; Gao W; Daye D; Williams MD; Richards-Kortum R; Gillenwater AM
    Appl Opt; 2008 Feb; 47(6):825-34. PubMed ID: 18288232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman imaging of carious lesions using a hollow optical fiber probe.
    Yokoyama E; Kakino S; Matsuura Y
    Appl Opt; 2008 Aug; 47(23):4227-30. PubMed ID: 18690263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth.
    Fang C; Brokl D; Brand RE; Liu Y
    Biomed Opt Express; 2011 Mar; 2(4):838-49. PubMed ID: 21483607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of a disposable submillimeter fiber optic Raman needle probe for enhancing real-time in vivo deep tissue and biofluids Raman measurements.
    Shu C; Zheng W; Wang Z; Yu C; Huang Z
    Opt Lett; 2021 Oct; 46(20):5197-5200. PubMed ID: 34653150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    J Biomed Opt; 2013 Jun; 18(6):067007. PubMed ID: 23797897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy.
    Wang J; Lin K; Zheng W; Ho KY; Teh M; Yeoh KG; Huang Z
    Anal Bioanal Chem; 2015 Nov; 407(27):8303-10. PubMed ID: 25943262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of a hand-held fiber-optic Raman probe with an integrated autofocus unit.
    Yang W; Knorr F; Popp J; Schie IW
    Opt Express; 2020 Oct; 28(21):30760-30770. PubMed ID: 33115070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.