These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21258488)

  • 1. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography.
    Meemon P; Lee KS; Rolland JP
    Biomed Opt Express; 2010 Aug; 1(2):537-552. PubMed ID: 21258488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual detection full range frequency domain optical coherence tomography.
    Lee KS; Meemon P; Dallas W; Hsu K; Rolland JP
    Opt Lett; 2010 Apr; 35(7):1058-60. PubMed ID: 20364216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography.
    Jaillon F; Makita S; Yabusaki M; Yasuno Y
    Opt Express; 2010 Jan; 18(2):1358-72. PubMed ID: 20173963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation of joint spectral and time domain optical coherence tomography (jSTdOCT) and phase-resolved Doppler OCT.
    Walther J; Koch E
    Opt Express; 2014 Sep; 22(19):23129-46. PubMed ID: 25321783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography.
    Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion encoded full range frequency domain optical coherence tomography.
    Hofer B; Povazay B; Hermann B; Unterhuber A; Matz G; Drexler W
    Opt Express; 2009 Jan; 17(1):7-24. PubMed ID: 19129868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal power decrease due to fringe washout as an extension of the limited Doppler flow measurement range in spectral domain optical coherence tomography.
    Walther J; Mueller G; Morawietz H; Koch E
    J Biomed Opt; 2010; 15(4):041511. PubMed ID: 20799789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation.
    Nan N; Wang X; Bu P; Li Z; Guo X; Chen Y; Wang X; Yuan F; Sasaki O
    Appl Opt; 2014 Apr; 53(12):2669-76. PubMed ID: 24787594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography.
    Yasuno Y; Makita S; Endo T; Aoki G; Itoh M; Yatagai T
    Appl Opt; 2006 Mar; 45(8):1861-5. PubMed ID: 16572705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral estimation optical coherence tomography for axial super-resolution.
    Liu X; Chen S; Cui D; Yu X; Liu L
    Opt Express; 2015 Oct; 23(20):26521-32. PubMed ID: 26480165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography.
    Meemon P; Rolland JP
    Biomed Opt Express; 2010 Sep; 1(3):955-966. PubMed ID: 21258521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography.
    Kim DY; Werner JS; Zawadzki RJ
    J Biomed Opt; 2010; 15(5):056011. PubMed ID: 21054105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total Retinal Blood Flow in a Nonhuman Primate Optic Nerve Transection Model Using Dual-Beam Bidirectional Doppler FD-OCT and Microsphere Method.
    Told R; Wang L; Cull G; Thompson SJ; Burgoyne CF; Aschinger GC; Schmetterer L; Werkmeister RM
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1432-40. PubMed ID: 27031838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound.
    Fujino Y; Bezerra HG; Attizzani GF; Wang W; Yamamoto H; Chamié D; Kanaya T; Mehanna E; Tahara S; Nakamura S; Costa MA
    Catheter Cardiovasc Interv; 2013 Sep; 82(3):E173-83. PubMed ID: 23359350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT.
    Walther J; Koch E
    Opt Express; 2009 Oct; 17(22):19698-713. PubMed ID: 19997190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source.
    Martell M; Haven NJ; Zemp R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clutter rejection filters for optical Doppler tomography.
    Ren H; Li X
    Opt Express; 2006 Jun; 14(13):6103-12. PubMed ID: 19516783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography.
    Hendargo HC; McNabb RP; Dhalla AH; Shepherd N; Izatt JA
    Biomed Opt Express; 2011 Aug; 2(8):2175-88. PubMed ID: 21833356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptable switching schemes for time-encoded multichannel optical coherence tomography.
    Wartak A; Beer F; Baumann B; Pircher M; Hitzenberger CK
    J Biomed Opt; 2018 May; 23(5):1-12. PubMed ID: 29797866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of a detector dead time in phase-resolved Doppler analysis using spectral domain optical coherence tomography.
    Walther J; Koch E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Feb; 34(2):241-251. PubMed ID: 28157850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.