These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21258540)

  • 1. Comparison of intensity-modulated continuous-wave lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications.
    Petschke A; La Rivière PJ
    Biomed Opt Express; 2010 Oct; 1(4):1188-1195. PubMed ID: 21258540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity.
    Lashkari B; Mandelis A
    Rev Sci Instrum; 2011 Sep; 82(9):094903. PubMed ID: 21974612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic signal-to-noise ratio comparison for pulse and continuous waveforms of very low optical fluence.
    Kang D
    J Biomed Opt; 2022 Jul; 27(7):076006. PubMed ID: 36451701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser.
    Maslov K; Wang LV
    J Biomed Opt; 2008; 13(2):024006. PubMed ID: 18465969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveform engineering analysis of photoacoustic radar chirp parameters for spatial resolution and SNR optimization.
    Sun Z; Baddour N; Mandelis A
    Photoacoustics; 2019 Jun; 14():49-66. PubMed ID: 31193128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirped pulse heterodyne for optimal beat note detection between a frequency comb and a continuous wave laser.
    Deschênes JD; Genest J
    Opt Express; 2015 Apr; 23(7):9295-312. PubMed ID: 25968761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains.
    Telenkov S; Mandelis A
    Rev Sci Instrum; 2010 Dec; 81(12):124901. PubMed ID: 21198041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined frequency domain photoacoustic and ultrasound imaging for intravascular applications.
    Castelino RF; Hynes M; Munding CE; Telenkov S; Foster FS
    Biomed Opt Express; 2016 Nov; 7(11):4441-4449. PubMed ID: 27895986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound.
    Alles EJ; Colchester RJ; Desjardins AE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):83-90. PubMed ID: 26552084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems.
    Cherkashin MN; Brenner C; Hofmann MR
    J Biomed Opt; 2019 Apr; 24(4):1-8. PubMed ID: 30968647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.
    Levi JR; Veerappan A; Chen B; Mirkov M; Sierra R; Spiegel JH
    Arch Facial Plast Surg; 2011; 13(1):41-50. PubMed ID: 21242431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid multi-wavelength photoacoustic imaging.
    Duan T; Lan H; Zhong H; Zhou M; Zhang R; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4804-4807. PubMed ID: 30441421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medical Applications of Diode Lasers: Pulsed versus Continuous Wave (cw) Regime.
    Michalik M; Szymańczyk J; Stajnke M; Ochrymiuk T; Cenian A
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34204189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous wave laser diodes enable fast optoacoustic imaging.
    Stylogiannis A; Prade L; Buehler A; Aguirre J; Sergiadis G; Ntziachristos V
    Photoacoustics; 2018 Mar; 9():31-38. PubMed ID: 29387537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-Induced Interference to Infrared Detector Using Continuous Wave and Short-Pulse Lasers.
    Ma Y; Zhou W; Chang H; Jian Z
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost Multi-Wavelength Photoacoustic Imaging Based on Portable Continuous-Wave Laser Diode Module.
    Zhong H; Jiang D; Lan H; Duan T; Gao F; Gao F
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):738-745. PubMed ID: 32746335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation.
    Sun X; Abshire JB
    Opt Express; 2012 Sep; 20(19):21291-304. PubMed ID: 23037252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system.
    Upputuri PK; Pramanik M
    Biomed Opt Express; 2015 Oct; 6(10):4118-29. PubMed ID: 26504659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid multi-wavelength nonlinear photoacoustic sensing and imaging.
    Duan T; Lan H; Zhong H; Zhou M; Zhang R; Gao F
    Opt Lett; 2018 Nov; 43(22):5611-5614. PubMed ID: 30439907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling both time-domain and frequency-domain photoacoustic imaging by a fingertip laser diode system.
    Zhong H; Zhang J; Duan T; Lan H; Zhou M; Gao F
    Opt Lett; 2019 Apr; 44(8):1988-1991. PubMed ID: 30985792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.