BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21258692)

  • 1. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes.
    Choi M; Davidson VL
    Metallomics; 2011 Feb; 3(2):140-51. PubMed ID: 21258692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loop-contraction mutagenesis of type 1 copper sites.
    Yanagisawa S; Dennison C
    J Am Chem Soc; 2004 Dec; 126(48):15711-9. PubMed ID: 15571393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering copper sites in proteins: loops confer native structures and properties to chimeric cupredoxins.
    Li C; Banfield MJ; Dennison C
    J Am Chem Soc; 2007 Jan; 129(3):709-18. PubMed ID: 17227035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectra of plastocyanin and pseudoazurin: evidence for conserved cysteine ligand conformations in cupredoxins (blue copper proteins).
    Han J; Adman ET; Beppu T; Codd R; Freeman HC; Huq LL; Loehr TM; Sanders-Loehr J
    Biochemistry; 1991 Nov; 30(45):10904-13. PubMed ID: 1932014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The linked conservation of structure and function in a family of high diversity: the monomeric cupredoxins.
    Gough J; Chothia C
    Structure; 2004 Jun; 12(6):917-25. PubMed ID: 15274913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility of the metal-binding region in apo-cupredoxins.
    Zaballa ME; Abriata LA; Donaire A; Vila AJ
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9254-9. PubMed ID: 22645370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution.
    Hart PJ; Nersissian AM; Herrmann RG; Nalbandyan RM; Valentine JS; Eisenberg D
    Protein Sci; 1996 Nov; 5(11):2175-83. PubMed ID: 8931136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The type 1 copper site of pseudoazurin: axial and rhombic.
    Gast P; Broeren FG; Sottini S; Aoki R; Takashina A; Yamaguchi T; Kohzuma T; Groenen EJ
    J Inorg Biochem; 2014 Aug; 137():57-63. PubMed ID: 24813397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paramagnetic 1H NMR spectrum of the cobalt(II) derivative of spinach plastocyanin.
    Dennison C; Sato K
    Inorg Chem; 2004 Feb; 43(4):1502-10. PubMed ID: 14966988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted motions in copper plastocyanin and azurin: an essential dynamics study.
    Arcangeli C; Bizzarri AR; Cannistraro S
    Biophys Chem; 2001 Mar; 90(1):45-56. PubMed ID: 11321674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins.
    Beedle AEM; Lezamiz A; Stirnemann G; Garcia-Manyes S
    Nat Commun; 2015 Aug; 6():7894. PubMed ID: 26235284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How the dynamics of the metal-binding loop region controls the acid transition in cupredoxins.
    Paltrinieri L; Borsari M; Battistuzzi G; Sola M; Dennison C; de Groot BL; Corni S; Bortolotti CA
    Biochemistry; 2013 Oct; 52(42):7397-404. PubMed ID: 24063705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial methionine has much less influence on reduction potentials in a CuA center than in a blue copper center.
    Hwang HJ; Berry SM; Nilges MJ; Lu Y
    J Am Chem Soc; 2005 May; 127(20):7274-5. PubMed ID: 15898751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer activity of a de novo designed copper center in a three-helix bundle fold.
    Plegaria JS; Herrero C; Quaranta A; Pecoraro VL
    Biochim Biophys Acta; 2016 May; 1857(5):522-530. PubMed ID: 26427552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How the local geometry of the Cu-binding site determines the thermal stability of blue copper proteins.
    Chaboy J; Díaz-Moreno S; Díaz-Moreno I; De la Rosa MA; Díaz-Quintana A
    Chem Biol; 2011 Jan; 18(1):25-31. PubMed ID: 21276936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of cytochrome c with the blue copper proteins, plastocyanin and azurin.
    Augustin MA; Chapman SK; Davies DM; Sykes AG; Speck SH; Margoliash E
    J Biol Chem; 1983 May; 258(10):6405-9. PubMed ID: 6304038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of copper ligand mutations on a cupredoxin with a green copper center.
    Roger M; Sciara G; Biaso F; Lojou E; Wang X; Bauzan M; Giudici-Orticoni MT; Vila AJ; Ilbert M
    Biochim Biophys Acta Bioenerg; 2017 May; 1858(5):351-359. PubMed ID: 28214520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.
    Roger M; Biaso F; Castelle CJ; Bauzan M; Chaspoul F; Lojou E; Sciara G; Caffarri S; Giudici-Orticoni MT; Ilbert M
    PLoS One; 2014; 9(6):e98941. PubMed ID: 24932914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.
    Giannotti MI; Cabeza de Vaca I; Artés JM; Sanz F; Guallar V; Gorostiza P
    J Phys Chem B; 2015 Sep; 119(36):12050-8. PubMed ID: 26305718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.