BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 21258693)

  • 1. Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods.
    He FA; Fan JT; Song F; Zhang LM; Lai-Wa Chan H
    Nanoscale; 2011 Mar; 3(3):1182-8. PubMed ID: 21258693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective n-type doping of graphene by photo-patterned gold nanoparticles.
    Huh S; Park J; Kim KS; Hong BH; Kim SB
    ACS Nano; 2011 May; 5(5):3639-44. PubMed ID: 21466191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalization of graphene via 1,3-dipolar cycloaddition.
    Quintana M; Spyrou K; Grzelczak M; Browne WR; Rudolf P; Prato M
    ACS Nano; 2010 Jun; 4(6):3527-33. PubMed ID: 20503982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition.
    Meng X; Geng D; Liu J; Li R; Sun X
    Nanotechnology; 2011 Apr; 22(16):165602. PubMed ID: 21393829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au.
    Wang C; Peng S; Chan R; Sun S
    Small; 2009 Mar; 5(5):567-70. PubMed ID: 19189329
    [No Abstract]   [Full Text] [Related]  

  • 6. Facile in situ fabrication of graphene-upconversion hybrid materials with amplified electrogenerated chemiluminescence.
    Yin M; Wu L; Li Z; Ren J; Qu X
    Nanoscale; 2012 Jan; 4(2):400-4. PubMed ID: 22159188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T; Liu S; Luo Y; Lu W; Wang L; Sun X
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties.
    Wang P; Zhai Y; Wang D; Dong S
    Nanoscale; 2011 Apr; 3(4):1640-5. PubMed ID: 21286599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets.
    Jin Z; Yao J; Kittrell C; Tour JM
    ACS Nano; 2011 May; 5(5):4112-7. PubMed ID: 21476571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyvalent DNA-graphene nanosheets "click" conjugates.
    Wang Z; Ge Z; Zheng X; Chen N; Peng C; Fan C; Huang Q
    Nanoscale; 2012 Jan; 4(2):394-9. PubMed ID: 22089524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and controllable fabrication of suspended graphene nanopore devices.
    Liu S; Zhao Q; Xu J; Yan K; Peng H; Yang F; You L; Yu D
    Nanotechnology; 2012 Mar; 23(8):085301. PubMed ID: 22293107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation.
    Fellahi O; Das MR; Coffinier Y; Szunerits S; Hadjersi T; Maamache M; Boukherroub R
    Nanoscale; 2011 Nov; 3(11):4662-9. PubMed ID: 21960142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.
    Turchanin A; Weber D; Büenfeld M; Kisielowski C; Fistul MV; Efetov KB; Weimann T; Stosch R; Mayer J; Gölzhäuser A
    ACS Nano; 2011 May; 5(5):3896-904. PubMed ID: 21491948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures.
    Didiot C; Pons S; Kierren B; Fagot-Revurat Y; Malterre D
    Nat Nanotechnol; 2007 Oct; 2(10):617-21. PubMed ID: 18654385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic resolution imaging of the edges of catalytically etched suspended few-layer graphene.
    Schäffel F; Wilson M; Bachmatiuk A; Rümmeli MH; Queitsch U; Rellinghaus B; Briggs GA; Warner JH
    ACS Nano; 2011 Mar; 5(3):1975-83. PubMed ID: 21344881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects.
    Yoonessi M; Shi Y; Scheiman DA; Lebron-Colon M; Tigelaar DM; Weiss RA; Meador MA
    ACS Nano; 2012 Sep; 6(9):7644-55. PubMed ID: 22931435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction.
    Yin H; Tang H; Wang D; Gao Y; Tang Z
    ACS Nano; 2012 Sep; 6(9):8288-97. PubMed ID: 22931045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles.
    Smoak EM; Carlo AD; Fowles CC; Banerjee IA
    Nanotechnology; 2010 Jan; 21(2):025603. PubMed ID: 19955623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.
    Williams G; Seger B; Kamat PV
    ACS Nano; 2008 Jul; 2(7):1487-91. PubMed ID: 19206319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.