BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21258787)

  • 1. Microsatellite-based quantification method to estimate biomass of endophytic Phialocephala species in strain mixtures.
    Reininger V; Grünig CR; Sieber TN
    Microb Ecol; 2011 Apr; 61(3):676-83. PubMed ID: 21258787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes.
    Tellenbach C; Grünig CR; Sieber TN
    Appl Environ Microbiol; 2010 Sep; 76(17):5764-72. PubMed ID: 20601500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitiveness of endophytic Phialocephala fortinii s.l. - Acephala applanata strains in Norway spruce roots.
    Stroheker S; Dubach V; Sieber TN
    Fungal Biol; 2018 May; 122(5):345-352. PubMed ID: 29665960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by root-associated dark septate endophytes.
    Reininger V; Grünig CR; Sieber TN
    Environ Microbiol; 2012 Apr; 14(4):1064-76. PubMed ID: 22212126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate-dependent.
    Tellenbach C; Grünig CR; Sieber TN
    Environ Microbiol; 2011 Sep; 13(9):2508-17. PubMed ID: 21812887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.
    Reininger V; Sieber TN
    PLoS One; 2012; 7(8):e42865. PubMed ID: 22900058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza.
    Reininger V; Sieber TN
    Environ Microbiol Rep; 2013 Dec; 5(6):892-8. PubMed ID: 24249297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the spatial and temporal dynamics of a community of the tree-root endophyte Phialocephala fortinii s.l.
    Queloz V; Grünig CR; Sieber TN; Holdenrieder O
    New Phytol; 2005 Dec; 168(3):651-60. PubMed ID: 16313647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala.
    Grünig CR; Queloz V; Duò A; Sieber TN
    Mycol Res; 2009 Feb; 113(Pt 2):207-21. PubMed ID: 19015028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii.
    Münzenberger B; Bubner B; Wöllecke J; Sieber TN; Bauer R; Fladung M; Hüttl RF
    Mycorrhiza; 2009 Sep; 19(7):481-492. PubMed ID: 19415343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov., formerly known as dark-septate endophyte type 1.
    Grünig CR; Sieber TN
    Mycologia; 2005; 97(3):628-40. PubMed ID: 16392252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of endochitinase-transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis.
    Stefani FO; Tanguay P; Pelletier G; Piché Y; Hamelin RC
    Appl Environ Microbiol; 2010 Apr; 76(8):2607-14. PubMed ID: 20173071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating Host Preference of Root Endophytes of Three European Tree Species, with a Focus on Members of the
    Stroheker S; Dubach V; Vögtli I; Sieber TN
    J Fungi (Basel); 2021 Apr; 7(4):. PubMed ID: 33921799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population genetic analysis of Phialocephala fortinii s.l. and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species.
    Grünig CR; Duò A; Sieber TN
    Fungal Genet Biol; 2006 Jun; 43(6):410-21. PubMed ID: 16631398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species.
    Grünig CR; McDonald BA; Sieber TN; Rogers SO; Holdenrieder O
    Fungal Genet Biol; 2004 Jul; 41(7):676-87. PubMed ID: 15275663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.1.-Acephala applanata species complex.
    Grünig CR; Duò A; Sieber TN; Holdenrieder O
    Mycologia; 2008; 100(1):47-67. PubMed ID: 18488352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the mating type (MAT) locus in the Phialocephala fortinii s.l. -Acephala applanata species complex.
    Zaffarano PL; Duò A; Grünig CR
    Fungal Genet Biol; 2010 Sep; 47(9):761-72. PubMed ID: 20541616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of methods for species recognition in the Phialocephala fortinii-Acephala applanata species complex using DNA analysis.
    Grünig CR; Brunner PC; Duò A; Sieber TN
    Fungal Genet Biol; 2007 Aug; 44(8):773-88. PubMed ID: 17289408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach.
    Gryndler M; Trilčová J; Hršelová H; Streiblová E; Gryndlerová H; Jansa J
    Mycorrhiza; 2013 Jul; 23(5):341-8. PubMed ID: 23271632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms.
    Naef A; Senatore M; Défago G
    FEMS Microbiol Ecol; 2006 Feb; 55(2):211-20. PubMed ID: 16420629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.