These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21261248)

  • 1. How mobile are sorbed cations in clays and clay rocks?
    Gimmi T; Kosakowski G
    Environ Sci Technol; 2011 Feb; 45(4):1443-9. PubMed ID: 21261248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling diffusion and adsorption in compacted bentonite: a critical review.
    Bourg IC; Bourg AC; Sposito G
    J Contam Hydrol; 2003 Mar; 61(1-4):293-302. PubMed ID: 12598111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of electrochemical properties of compacted clays by concentration potential method.
    Yaroshchuk A; Glaus MA; Van Loon LR
    J Colloid Interface Sci; 2007 May; 309(2):262-71. PubMed ID: 17346739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of secondary sorption behavior of montmorillonite modified by single chain quaternary ammonium cations.
    Zhao Q; Burns SE
    Environ Sci Technol; 2012 Apr; 46(7):3999-4007. PubMed ID: 22364194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling sorption and diffusion of organic sorbate in hexadecyltrimethylammonium-modified clay nanopores - a molecular dynamics simulation study.
    Zhao Q; Burns SE
    Environ Sci Technol; 2013 Mar; 47(6):2769-76. PubMed ID: 23413980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking the diffusion of water in compacted clays at two different time scales: tracer through-diffusion and quasielastic neutron scattering.
    González Sánchez F; Gimmi T; Jurányi F; Van Loon L; Diamond LW
    Environ Sci Technol; 2009 May; 43(10):3487-93. PubMed ID: 19544844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved interpretation of in-diffusion measurements with confined swelling clays.
    Yaroshchuk AE; Van Loon LR
    J Contam Hydrol; 2008 Apr; 97(1-2):67-74. PubMed ID: 18291558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of the long-chain organic cation structure in the sorption of the penconazole and metalaxyl fungicides by organo clays.
    Rodríguez-Cruz MS; Andrades MS; Sánchez-Martín MJ
    J Hazard Mater; 2008 Dec; 160(1):200-7. PubMed ID: 18400383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation Diffusion in Compacted Clay: A Pore-Scale View.
    Yang Y; Wang M
    Environ Sci Technol; 2019 Feb; 53(4):1976-1984. PubMed ID: 30652850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.
    Vejsada J; Jelínek E; Randa Z; Hradil D; Prikryl R
    Appl Radiat Isot; 2005 Jan; 62(1):91-6. PubMed ID: 15498690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Dec; 47(24):14233-41. PubMed ID: 24266749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.
    Musso TB; Parolo ME; Pettinari G; Francisca FM
    J Environ Manage; 2014 Dec; 146():50-58. PubMed ID: 25156265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of component additive modelling approach for europium adsorption on 2:1 clays: Experimental, thermodynamic databases, and models.
    Missana T; Alonso U; García-Gutiérrez M
    Chemosphere; 2021 Jun; 272():129877. PubMed ID: 33592507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p-Nitrophenol, phenol and aniline sorption by organo-clays.
    Ko CH; Fan C; Chiang PN; Wang MK; Lin KC
    J Hazard Mater; 2007 Oct; 149(2):275-82. PubMed ID: 17478038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triazine adsorption by saponite and beidellite clay minerals.
    Aggarwal V; Li H; Teppen BJ
    Environ Toxicol Chem; 2006 Feb; 25(2):392-9. PubMed ID: 16519299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of plutonium and americium sorption to natural clay.
    Lujanienė G; Beneš P; Štamberg K; Ščiglo T
    J Environ Radioact; 2012 Jun; 108():41-9. PubMed ID: 21940076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of bifunctional nanostructured adsorbents based on anionic/cationic clays: effect of arrangement on simultaneous adsorption of cadmium and arsenate.
    Liñán-González AE; Aguilar-Aguilar A; Robledo-Cabrera A; Collins-Martínez VH; Flores-Cano JV; Ocampo-Perez R; Padilla-Ortega E
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40100-40116. PubMed ID: 37391564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the sorption of tetracycline onto clays and marine sediment from seawater.
    Wang J; Hu J; Zhang S
    J Colloid Interface Sci; 2010 Sep; 349(2):578-82. PubMed ID: 20580373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.