These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 21261257)

  • 1. Multiwavelength Raman microspectroscopy for rapid prediction of soot oxidation reactivity.
    Schmid J; Grob B; Niessner R; Ivleva NP
    Anal Chem; 2011 Feb; 83(4):1173-9. PubMed ID: 21261257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy.
    Knauer M; Schuster ME; Su D; Schlögl R; Niessner R; Ivleva NP
    J Phys Chem A; 2009 Dec; 113(50):13871-80. PubMed ID: 19899796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductivity for soot sensing: possibilities and limitations.
    Grob B; Schmid J; Ivleva NP; Niessner R
    Anal Chem; 2012 Apr; 84(8):3586-92. PubMed ID: 22455449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system.
    Ivleva NP; Messerer A; Yang X; Niessner R; Pöschl U
    Environ Sci Technol; 2007 May; 41(10):3702-7. PubMed ID: 17547200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of diesel and gasoline engine-out soot using different laser power.
    Ge H; Ye Z; He R
    J Environ Sci (China); 2019 May; 79():74-80. PubMed ID: 30784466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulk and surface structural investigations of diesel engine soot and carbon black.
    Müller JO; Su DS; Wild U; Schlögl R
    Phys Chem Chem Phys; 2007 Aug; 9(30):4018-25. PubMed ID: 17646891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous chemistry of toluene, kerosene and diesel soots.
    Daly HM; Horn AB
    Phys Chem Chem Phys; 2009 Feb; 11(7):1069-76. PubMed ID: 19543604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface sensitive study to determine the reactivity of soot with the focus on the European emission standards IV and VI.
    Schuster ME; Hävecker M; Arrigo R; Blume R; Knauer M; Ivleva NP; Su DS; Niessner R; Schlögl R
    J Phys Chem A; 2011 Mar; 115(12):2568-80. PubMed ID: 21381726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot from a diesel engine at a particular running condition.
    Tapia A; Salgado MS; Martín MP; Sánchez-Valdepeñas J; Rossi MJ; Cabañas B
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):4863-72. PubMed ID: 24807246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of soot oxidation by NO2.
    Shrivastava M; Nguyen A; Zheng Z; Wu HW; Jung HS
    Environ Sci Technol; 2010 Jun; 44(12):4796-801. PubMed ID: 20491473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying disorder in graphite-based systems by Raman spectroscopy.
    Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R
    Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features.
    Fernandes MB; Skjemstad JO; Johnson BB; Wells JD; Brooks P
    Chemosphere; 2003 Jun; 51(8):785-95. PubMed ID: 12668037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and hygroscopic changes of soot during heterogeneous reaction with O(3).
    Liu Y; Liu C; Ma J; Ma Q; He H
    Phys Chem Chem Phys; 2010 Sep; 12(36):10896-903. PubMed ID: 20657898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method.
    Tapia A; Salgado MS; Martín MP; Lapuerta M; Rodríguez-Fernández J; Rossi MJ; Cabañas B
    Environ Sci Technol; 2016 Mar; 50(6):2946-55. PubMed ID: 26886850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC.
    Han Y; Cao J; Chow JC; Watson JG; An Z; Jin Z; Fung K; Liu S
    Chemosphere; 2007 Sep; 69(4):569-74. PubMed ID: 17462705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally induced variations in the nanostructure and reactivity of soot particles emitted from a diesel engine.
    Liu Y; Fan C; Wang X; Liu F; Chen H
    Chemosphere; 2022 Jan; 286(Pt 2):131712. PubMed ID: 34333188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of hot Soxhlet and accelerated solvent extractions with microwave and supercritical fluid extractions for the determination of polycyclic aromatic hydrocarbons and nitrated derivatives strongly adsorbed on soot collected inside a diesel particulate filter.
    Oukebdane K; Portet-Koltalo F; Machour N; Dionnet F; Desbène PL
    Talanta; 2010 Jun; 82(1):227-36. PubMed ID: 20685461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of soot microstructure on its ozonization reactivity.
    Han C; Liu Y; Ma J; He H
    J Chem Phys; 2012 Aug; 137(8):084507. PubMed ID: 22938250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of intermediates and mechanism for soot combustion with NOx/O₂ on potassium-supported Mg-Al hydrotalcite mixed oxides by in situ FTIR.
    Zhang Z; Zhang Y; Su Q; Wang Z; Li Q; Gao X
    Environ Sci Technol; 2010 Nov; 44(21):8254-8. PubMed ID: 20923141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.