These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21261280)

  • 21. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction.
    Feng X; Wu Z; Cheng LKW; Xiang Y; Sugimura R; Lin X; Wu AR
    Lab Chip; 2024 Jul; 24(14):3546-3555. PubMed ID: 38949063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing.
    Cosson S; Aeberli LG; Brandenberg N; Lutolf MP
    Lab Chip; 2015 Jan; 15(1):72-6. PubMed ID: 25373917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid prototyping of microstructures by soft lithography for biotechnology.
    Wolfe DB; Qin D; Whitesides GM
    Methods Mol Biol; 2010; 583():81-107. PubMed ID: 19763460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications.
    Sticker D; Rothbauer M; Lechner S; Hehenberger MT; Ertl P
    Lab Chip; 2015 Dec; 15(24):4542-54. PubMed ID: 26524977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hot embossing for fabrication of a microfluidic 3D cell culture platform.
    Jeon JS; Chung S; Kamm RD; Charest JL
    Biomed Microdevices; 2011 Apr; 13(2):325-33. PubMed ID: 21113663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid prototyping of polydimethylsiloxane (PDMS) microchips using electrohydrodynamic jet printing: Application to electrokinetic assays.
    Choubey A; Dubey K; Bahga SS
    Electrophoresis; 2023 Apr; 44(7-8):725-732. PubMed ID: 36774545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma stencilling methods for cell patterning.
    Frimat JP; Menne H; Michels A; Kittel S; Kettler R; Borgmann S; Franzke J; West J
    Anal Bioanal Chem; 2009 Oct; 395(3):601-9. PubMed ID: 19449153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.
    Bsoul A; Pan S; Cretu E; Stoeber B; Walus K
    Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves.
    Gu P; Liu K; Chen H; Nishida T; Fan ZH
    Anal Chem; 2011 Jan; 83(1):446-52. PubMed ID: 21121689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on Parylene C-caulked PDMS (pcPDMS) for low permeability required microfluidics applications.
    Lei Y; Liu Y; Wang W; Wu W; Li Z
    Lab Chip; 2011 Apr; 11(7):1385-8. PubMed ID: 21327252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.