These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21261333)
1. A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. Nagata T; Fedorov DG; Sawada T; Kitaura K; Gordon MS J Chem Phys; 2011 Jan; 134(3):034110. PubMed ID: 21261333 [TBL] [Abstract][Full Text] [Related]
2. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. Fedorov DG; Ishida T; Uebayasi M; Kitaura K J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363 [TBL] [Abstract][Full Text] [Related]
3. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. Nagata T; Fedorov DG; Li H; Kitaura K J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545 [TBL] [Abstract][Full Text] [Related]
4. Fully analytic energy gradient in the fragment molecular orbital method. Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653 [TBL] [Abstract][Full Text] [Related]
5. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. Nagata T; Fedorov DG; Kitaura K; Gordon MS J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964 [TBL] [Abstract][Full Text] [Related]
6. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361 [TBL] [Abstract][Full Text] [Related]
7. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method. Nagata T; Fedorov DG; Ishimura K; Kitaura K J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093 [TBL] [Abstract][Full Text] [Related]
8. Energy decomposition analysis in solution based on the fragment molecular orbital method. Fedorov DG; Kitaura K J Phys Chem A; 2012 Jan; 116(1):704-19. PubMed ID: 22098297 [TBL] [Abstract][Full Text] [Related]
9. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184 [TBL] [Abstract][Full Text] [Related]
10. Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient. Nakata H; Fedorov DG; Nagata T; Yokojima S; Ogata K; Kitaura K; Nakamura S J Chem Phys; 2012 Jul; 137(4):044110. PubMed ID: 22852600 [TBL] [Abstract][Full Text] [Related]
11. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study. Nakanishi I; Fedorov DG; Kitaura K Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719 [TBL] [Abstract][Full Text] [Related]
12. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. Dabkowska I; Jurecka P; Hobza P J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739 [TBL] [Abstract][Full Text] [Related]
13. Systematic study of the embedding potential description in the fragment molecular orbital method. Fedorov DG; Slipchenko LV; Kitaura K J Phys Chem A; 2010 Aug; 114(33):8742-53. PubMed ID: 20441228 [TBL] [Abstract][Full Text] [Related]
14. Optimizing conical intersections of solvated molecules: the combined spin-flip density functional theory/effective fragment potential method. Minezawa N; Gordon MS J Chem Phys; 2012 Jul; 137(3):034116. PubMed ID: 22830692 [TBL] [Abstract][Full Text] [Related]
15. Møller-Plesset perturbation theory gradient in the generalized hybrid orbital quantum mechanical and molecular mechanical method. Jung J; Sugita Y; Ten-no S J Chem Phys; 2010 Feb; 132(8):084106. PubMed ID: 20192289 [TBL] [Abstract][Full Text] [Related]
16. Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method. Rahalkar AP; Katouda M; Gadre SR; Nagase S J Comput Chem; 2010 Oct; 31(13):2405-18. PubMed ID: 20652984 [TBL] [Abstract][Full Text] [Related]
17. Coupled-cluster theory based upon the fragment molecular-orbital method. Fedorov DG; Kitaura K J Chem Phys; 2005 Oct; 123(13):134103. PubMed ID: 16223271 [TBL] [Abstract][Full Text] [Related]
18. Ab initio investigation of the aqueous solvation of the nitrate ion. Pruitt SR; Brorsen KR; Gordon MS Phys Chem Chem Phys; 2015 Oct; 17(40):27027-34. PubMed ID: 26412597 [TBL] [Abstract][Full Text] [Related]
19. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry. Miller Y; Thomas JL; Kemp DD; Finlayson-Pitts BJ; Gordon MS; Tobias DJ; Gerber RB J Phys Chem A; 2009 Nov; 113(46):12805-14. PubMed ID: 19817362 [TBL] [Abstract][Full Text] [Related]
20. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. Fedorov DG; Kitaura K J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]