BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21261391)

  • 1. Electron capture induced dissociation of doubly protonated pentapeptides: dependence on molecular structure and charge separation.
    Haag N; Holm AI; Johansson HA; Zettergren H; Schmidt HT; Brøndsted Nielsen S; Hvelplund P; Cederquist H
    J Chem Phys; 2011 Jan; 134(3):035102. PubMed ID: 21261391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-capture induced dissociation of doubly charged dipeptides: on the neutral losses and N-Cα bond cleavages.
    Jensen CS; Wyer JA; Houmøller J; Hvelplund P; Nielsen SB
    Phys Chem Chem Phys; 2011 Nov; 13(41):18373-8. PubMed ID: 21826349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase.
    Turecek F; Chen X; Hao C
    J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals.
    Turecek F; Chung TW; Moss CL; Wyer JA; Ehlerding A; Holm AI; Zettergren H; Nielsen SB; Hvelplund P; Chamot-Rooke J; Bythell B; Paizs B
    J Am Chem Soc; 2010 Aug; 132(31):10728-40. PubMed ID: 20681705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes.
    Shin JW; Lee YH; Hwang S; Lee SW
    J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-capture-induced dissociation of microsolvated di- and tripeptide monocations: elucidation of fragmentation channels from measurements of negative ions.
    Zettergren H; Adoui L; Bernigaud V; Cederquist H; Haag N; Holm AI; Huber BA; Hvelplund P; Johansson H; Kadhane U; Larsen MK; Liu B; Manil B; Brøndsted Nielsen S; Panja S; Rangama J; Reinhed P; Schmidt HT; Støchkel K
    Chemphyschem; 2009 Jul; 10(9-10):1619-23. PubMed ID: 19266530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of electron-capture-induced dissociation of peptide dications from 15n-labeling and crown-ether complexation.
    Holm AI; Hvelplund P; Kadhane U; Larsen MK; Liu B; Nielsen SB; Panja S; Pedersen JM; Skrydstrup T; Støchkel K; Williams ER; Worm ES
    J Phys Chem A; 2007 Oct; 111(39):9641-3. PubMed ID: 17850054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations.
    Chen X; Turecek F
    J Am Chem Soc; 2006 Sep; 128(38):12520-30. PubMed ID: 16984203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipole and Coulomb forces in electron capture dissociation and electron transfer dissociation mass spectroscopy.
    Świerszcz I; Skurski P; Simons J
    J Phys Chem A; 2012 Feb; 116(7):1828-37. PubMed ID: 22283160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.
    Sun Q; Nelson H; Ly T; Stoltz BM; Julian RR
    J Proteome Res; 2009 Feb; 8(2):958-66. PubMed ID: 19113886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens.
    Rand KD; Adams CM; Zubarev RA; Jørgensen TJ
    J Am Chem Soc; 2008 Jan; 130(4):1341-9. PubMed ID: 18171065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of protonation sites and conformations of protonated amino acids by IRMPD spectroscopy.
    Wu R; McMahon TB
    Chemphyschem; 2008 Dec; 9(18):2826-35. PubMed ID: 18846594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation sites and conformations of peptides of glycine (Gly(1-5)H(+)) by IRMPD spectroscopy.
    Wu R; McMahon TB
    J Phys Chem B; 2009 Jun; 113(25):8767-75. PubMed ID: 19485314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metals as electron traps. II. Structures, energetics and electron transfer dissociations of ternary Co, Ni and Zn-peptide complexes in the gas phase.
    Turecek F; Holm AI; Panja S; Nielsen SB; Hvelplund P
    J Mass Spectrom; 2009 Oct; 44(10):1518-31. PubMed ID: 19753554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of charge location on the absorptions and lifetimes of protonated tyrosine peptides in vacuo.
    Kelly O; Calvert CR; Greenwood JB; Zettergren H; Nielsen SB; Wyer JA
    J Phys Chem A; 2012 Feb; 116(7):1701-9. PubMed ID: 22268622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral loss of amino acid residues from protonated peptides in collision-induced dissociation generates N- or C-terminal sequence ladders.
    Salek M; Lehmann WD
    J Mass Spectrom; 2003 Nov; 38(11):1143-9. PubMed ID: 14648821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical and computational studies of intramolecular electron transfer pertinent to electron transfer and electron capture dissociation mass spectrometry.
    Neff D; Simons J
    J Phys Chem A; 2010 Jan; 114(3):1309-23. PubMed ID: 19731901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel intramolecular hydrogen bonding between a side-chain pyridine ring and an amide hydrogen of the peptide backbone in tripeptides containing the new amino acid, alpha,alpha-di(2-pyridyl)glycine.
    Yamada T; Ichino T; Hanyu M; Ninomiya D; Yanagihara R; Miyazawa T; Murashima T
    Org Biomol Chem; 2004 Aug; 2(16):2335-9. PubMed ID: 15305215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.