These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 21261403)

  • 1. Legitimacy of the stochastic Michaelis-Menten approximation.
    Sanft KR; Gillespie DT; Petzold LR
    IET Syst Biol; 2011 Jan; 5(1):58. PubMed ID: 21261403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise slows the rate of Michaelis-Menten reactions.
    Van Dyken JD
    J Theor Biol; 2017 Oct; 430():21-31. PubMed ID: 28676416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions.
    Grima R
    Phys Rev Lett; 2009 May; 102(21):218103. PubMed ID: 19519139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated stochastic simulation of the stiff enzyme-substrate reaction.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2005 Oct; 123(14):144917. PubMed ID: 16238434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
    Eilertsen J; Schnell S
    Bull Math Biol; 2021 Nov; 84(1):7. PubMed ID: 34825985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule enzymology à la Michaelis-Menten.
    Grima R; Walter NG; Schnell S
    FEBS J; 2014 Jan; 281(2):518-30. PubMed ID: 24289171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Michaelis-Menten relations for complex enzymatic networks.
    Kolomeisky AB
    J Chem Phys; 2011 Apr; 134(15):155101. PubMed ID: 21513417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic time-dependent enzyme kinetics: Closed-form solution and transient bimodality.
    Holehouse J; Sukys A; Grima R
    J Chem Phys; 2020 Oct; 153(16):164113. PubMed ID: 33138415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic enzyme kinetics and the quasi-steady-state reductions: Application of the slow scale linear noise approximation à la Fenichel.
    Eilertsen J; Srivastava K; Schnell S
    J Math Biol; 2022 Jul; 85(1):3. PubMed ID: 35776210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A full stochastic description of the Michaelis-Menten reaction for small systems.
    Arányi P; Tóth J
    Acta Biochim Biophys Acad Sci Hung; 1977; 12(4):375-88. PubMed ID: 613716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
    Kumar A; Chatterjee S; Nandi M; Dua A
    J Chem Phys; 2016 Aug; 145(8):085103. PubMed ID: 27586952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
    Santos FA; Gadêlha H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062714. PubMed ID: 26764734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions.
    Thomas P; Straube AV; Grima R
    BMC Syst Biol; 2012 May; 6():39. PubMed ID: 22583770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics.
    Kang HW; KhudaBukhsh WR; Koeppl H; Rempała GA
    Bull Math Biol; 2019 May; 81(5):1303-1336. PubMed ID: 30756234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production-passage-time approximation: a new approximation method to accelerate the simulation process of enzymatic reactions.
    Kuwahara H; Myers CJ
    J Comput Biol; 2008 Sep; 15(7):779-92. PubMed ID: 18662102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: Parameter-independent bounding of the stochastic Michaelis-Menten steady-state intrinsic noise variance.
    Widmer LA; Stelling J; Doyle FJ
    J Chem Phys; 2013 Oct; 139(16):166102. PubMed ID: 24182089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.