These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21261766)

  • 21. Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants.
    Gladieux P; Guérin F; Giraud T; Caffier V; Lemaire C; Parisi L; Didelot F; LE Cam B
    Mol Ecol; 2011 Nov; 20(21):4521-32. PubMed ID: 21967446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morpho-Molecular Characterization of Two
    Liyanage KK; Khan S; Brooks S; Mortimer PE; Karunarathna SC; Xu J; Hyde KD
    Front Microbiol; 2018; 9():12. PubMed ID: 29403464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of
    Awan SI; Thapa R; Svara A; Feulner H; Streb N; Khan A
    Phytopathology; 2023 Jul; 113(7):1289-1300. PubMed ID: 36802874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What is the role of the nitrate reductase (euknr) gene in fungi that live in nitrate-free environments? A targeted gene knock-out study in Ampelomyces mycoparasites.
    Németh MZ; Li G; Seress D; Pintye A; Molnár O; Kovács GM; Kiss L; Gorfer M
    Fungal Biol; 2021 Nov; 125(11):905-913. PubMed ID: 34649677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat.
    Gladieux P; Caffier V; Devaux M; Le Cam B
    Fungal Genet Biol; 2010 Jun; 47(6):511-21. PubMed ID: 20060485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Re-evaluation of pathogens causing Valsa canker on apple in China.
    Wang X; Wei J; Huang L; Kang Z
    Mycologia; 2011; 103(2):317-24. PubMed ID: 21415290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The
    Frantzeskakis L; Németh MZ; Barsoum M; Kusch S; Kiss L; Takamatsu S; Panstruga R
    mBio; 2019 Sep; 10(5):. PubMed ID: 31551331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Four powdery mildew species with catenate conidia infect Galium: molecular and morphological evidence.
    Takamatsu S; Heluta V; Havrylenko M; Divarangkoon R
    Mycol Res; 2009 Jan; 113(Pt 1):117-29. PubMed ID: 18930816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The haustorial transcriptome of the cucurbit pathogen Podosphaera xanthii reveals new insights into the biotrophy and pathogenesis of powdery mildew fungi.
    Polonio Á; Seoane P; Claros MG; Pérez-García A
    BMC Genomics; 2019 Jul; 20(1):543. PubMed ID: 31272366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Genome Resource for the Apple Powdery Mildew Pathogen
    Gañán L; White RA; Friesen ML; Peever TL; Amiri A
    Phytopathology; 2020 Nov; 110(11):1756-1758. PubMed ID: 32515644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of internal transcribed spacer 2 secondary structures in classifying mycoparasitic Ampelomyces.
    Prahl RE; Khan S; Deo RC
    PLoS One; 2021; 16(6):e0253772. PubMed ID: 34191835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of molecular markers in apple breeding for disease resistance.
    Stankiewicz M; Pitera E; Gawroński SW
    Cell Mol Biol Lett; 2002; 7(2A):445-8. PubMed ID: 12378248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome Analysis of Apple Leaves in Response to Powdery Mildew (
    Tian X; Zhang L; Feng S; Zhao Z; Wang X; Gao H
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hyperparasite affects the population dynamics of a wild plant pathogen.
    Tollenaere C; Pernechele B; Mäkinen HS; Parratt SR; Németh MZ; Kovács GM; Kiss L; Tack AJ; Laine AL
    Mol Ecol; 2014 Dec; 23(23):5877-87. PubMed ID: 25204419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America.
    González-Vera AD; Bernardes-de-Assis J; Zala M; McDonald BA; Correa-Victoria F; Graterol-Matute EJ; Ceresini PC
    Phytopathology; 2010 Feb; 100(2):172-82. PubMed ID: 20055651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of ITS sequences from UK and North American sugar-beet powdery mildews and the designation of Erysiphe betae.
    Francis SA; Roden BC; Adams MJ; Weiland J; Asher MJ
    Mycol Res; 2007 Feb; 111(Pt 2):204-12. PubMed ID: 17324758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves.
    Romero D; Rivera ME; Cazorla FM; de Vicente A; Pérez-García A
    Mycol Res; 2003 Jan; 107(Pt 1):64-71. PubMed ID: 12735245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell biology of the plant-powdery mildew interaction.
    Hückelhoven R; Panstruga R
    Curr Opin Plant Biol; 2011 Dec; 14(6):738-46. PubMed ID: 21924669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple displacement amplification, a powerful tool for molecular genetic analysis of powdery mildew fungi.
    Fernández-Ortuño D; Torés JA; de Vicente A; Pérez-García A
    Curr Genet; 2007 Mar; 51(3):209-19. PubMed ID: 17256172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line.
    Backes G; Madsen LH; Jaiser H; Stougaard J; Herz M; Mohler V; Jahoor A
    Theor Appl Genet; 2003 Jan; 106(2):353-62. PubMed ID: 12582863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.