BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21261813)

  • 1. Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy.
    Hou S; Li L
    J Integr Plant Biol; 2011 Feb; 53(2):166-75. PubMed ID: 21261813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of holocellulose and lignin content in Chinese fir by near infrared spectroscopy].
    Huang AM; Jiang ZH; Li GY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1328-31. PubMed ID: 17944406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling.
    Robinson AR; Mansfield SD
    Plant J; 2009 May; 58(4):706-14. PubMed ID: 19175772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy.
    Yeh TF; Yamada T; Capanema E; Chang HM; Chiang V; Kadla JF
    J Agric Food Chem; 2005 May; 53(9):3328-32. PubMed ID: 15853367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy].
    Jiang ZH; Fei BH; Yang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):435-8. PubMed ID: 17554892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1. Yellow-poplar (Liriodendron tulipifera L.).
    Nkansah K; Dawson-Andoh B; Slahor J
    Bioresour Technol; 2010 Jun; 101(12):4570-6. PubMed ID: 20163955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural features affecting biomass enzymatic digestibility.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2008 Jun; 99(9):3817-28. PubMed ID: 17826088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rapid determination of Klason lignin content in bamboo by NIR].
    Li GY; Huang AM; Wang G; Qin DC; Jiang ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):1977-80. PubMed ID: 18306776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus.
    Huang J; Xia T; Li A; Yu B; Li Q; Tu Y; Zhang W; Yi Z; Peng L
    Bioresour Technol; 2012 Oct; 121():274-81. PubMed ID: 22858496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process.
    Castillo Rdel P; Baeza J; Rubilar J; Rivera A; Freer J
    Appl Biochem Biotechnol; 2012 Dec; 168(7):2028-42. PubMed ID: 23070712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods.
    Labbé N; Lee SH; Cho HW; Jeong MK; André N
    Bioresour Technol; 2008 Nov; 99(17):8445-52. PubMed ID: 18407492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy.
    Yeh TF; Chang HM; Kadla JF
    J Agric Food Chem; 2004 Mar; 52(6):1435-9. PubMed ID: 15030192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemometric analysis with near-infrared spectroscopy for chemically pretreated Erianthus toward efficient bioethanol production.
    Horikawa Y; Imai T; Takada R; Watanabe T; Takabe K; Kobayashi Y; Sugiyama J
    Appl Biochem Biotechnol; 2012 Feb; 166(3):711-21. PubMed ID: 22127809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of main components and anaerobic rumen digestibility of aquatic plants in vitro using near-infrared-reflectance spectroscopy.
    Yue ZB; Zhang ML; Sheng GP; Liu RH; Long Y; Xiang BR; Wang J; Yu HQ
    Water Res; 2010 Apr; 44(7):2229-34. PubMed ID: 20089290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of near infrared spectroscopy in analysis of wood properties].
    Yao S; Pu JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):974-8. PubMed ID: 19626884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.
    Philip Ye X; Liu L; Hayes D; Womac A; Hong K; Sokhansanj S
    Bioresour Technol; 2008 Oct; 99(15):7323-32. PubMed ID: 18249535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).
    Al-Haddad JM; Kang KY; Mansfield SD; Telewski FW
    Tree Physiol; 2013 Apr; 33(4):365-73. PubMed ID: 23515474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Discrimination of wood biological decay by NIR and partial least squares discriminant analysis (PLS-DA)].
    Yang Z; Ren HQ; Jiang ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):793-6. PubMed ID: 18619300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].
    Du J; An D; Xia T; Huang YH; Li HC; Zhang YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3207-11. PubMed ID: 24611371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.