BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21261884)

  • 41. Pseudomonas putida as a platform for the synthesis of aromatic compounds.
    Molina-Santiago C; Cordero BF; Daddaoua A; Udaondo Z; Manzano J; Valdivia M; Segura A; Ramos JL; Duque E
    Microbiology (Reading); 2016 Sep; 162(9):1535-1543. PubMed ID: 27417954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Up-promoter mutations in the trpBA operon of Pseudomonas aeruginosa.
    Han CY; Crawford IP; Harwood CS
    J Bacteriol; 1991 Jun; 173(12):3756-62. PubMed ID: 1904857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism.
    Horn JM; Harayama S; Timmis KN
    Mol Microbiol; 1991 Oct; 5(10):2459-74. PubMed ID: 1791759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics.
    Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E
    Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1.
    De Vrind J; De Groot A; Brouwers GJ; Tommassen J; De Vrind-De Jong E
    Mol Microbiol; 2003 Feb; 47(4):993-1006. PubMed ID: 12581354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria.
    Panina EM; Vitreschak AG; Mironov AA; Gelfand MS
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):529-43. PubMed ID: 11545272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1.
    Endoh T; Habe H; Yoshida T; Nojiri H; Omori T
    Microbiology (Reading); 2003 Apr; 149(Pt 4):991-1000. PubMed ID: 12686641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.
    Nelson KE; Weinel C; Paulsen IT; Dodson RJ; Hilbert H; Martins dos Santos VA; Fouts DE; Gill SR; Pop M; Holmes M; Brinkac L; Beanan M; DeBoy RT; Daugherty S; Kolonay J; Madupu R; Nelson W; White O; Peterson J; Khouri H; Hance I; Chris Lee P; Holtzapple E; Scanlan D; Tran K; Moazzez A; Utterback T; Rizzo M; Lee K; Kosack D; Moestl D; Wedler H; Lauber J; Stjepandic D; Hoheisel J; Straetz M; Heim S; Kiewitz C; Eisen JA; Timmis KN; Düsterhöft A; Tümmler B; Fraser CM
    Environ Microbiol; 2002 Dec; 4(12):799-808. PubMed ID: 12534463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate.
    Eaton RW
    J Bacteriol; 1997 May; 179(10):3171-80. PubMed ID: 9150211
    [TBL] [Abstract][Full Text] [Related]  

  • 53. XylUW, two genes at the start of the upper pathway operon of TOL plasmid pWW0, appear to play no essential part in determining its catabolic phenotype.
    Williams PA; Shaw LM; Pitt CW; Vrecl M
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():101-107. PubMed ID: 9025283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the Furfural and 5-Hydroxymethylfurfural (HMF) Metabolic Pathway in the Novel Isolate Pseudomonas putida ALS1267.
    Crigler J; Eiteman MA; Altman E
    Appl Biochem Biotechnol; 2020 Mar; 190(3):918-930. PubMed ID: 31605303
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptional organization of the Pseudomonas putida tol-oprL genes.
    Llamas MA; Ramos JL; Rodríguez-Herva JJ
    J Bacteriol; 2003 Jan; 185(1):184-95. PubMed ID: 12486055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration.
    Kampers LFC; Koehorst JJ; van Heck RJA; Suarez-Diez M; Stams AJM; Schaap PJ
    BMC Microbiol; 2021 Jan; 21(1):9. PubMed ID: 33407113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa.
    Venturi V; Ottevanger C; Leong J; Weisbeek PJ
    Mol Microbiol; 1993 Oct; 10(1):63-73. PubMed ID: 7968519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways.
    Aemprapa S; Williams PA
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1387-1396. PubMed ID: 9611813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida.
    Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H
    Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids.
    Guzik MW; Narancic T; Ilic-Tomic T; Vojnovic S; Kenny ST; Casey WT; Duane GF; Casey E; Woods T; Babu RP; Nikodinovic-Runic J; O'Connor KE
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1760-1771. PubMed ID: 24794972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.