BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2126233)

  • 1. An evaluation of the "in vivo" and "in vitro" biological reaction and mechanical features of carbon fibre composites.
    Sudanese A; Ciappetti G; Baldini N; Stea S; Ciaroni D; Dallari D; Toni A; Giunti A
    Chir Organi Mov; 1990; 75(2):171-6. PubMed ID: 2126233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.
    Bagheri ZS; El Sawi I; Schemitsch EH; Zdero R; Bougherara H
    J Mech Behav Biomed Mater; 2013 Apr; 20():398-406. PubMed ID: 23499250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of carbon fiber and stainless steel root canal posts.
    Purton DG; Payne JA
    Quintessence Int; 1996 Feb; 27(2):93-7. PubMed ID: 9063218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and wear behavior of polymer matrix composites with an interpenetrating network structure derived from natural sponge.
    Wang T; Zhou T; Xiong D
    Bioinspir Biomim; 2010 Mar; 5(1):16003. PubMed ID: 20185858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological response to chopped-carbon-fiber-reinforced peek.
    Jockisch KA; Brown SA; Bauer TW; Merritt K
    J Biomed Mater Res; 1992 Feb; 26(2):133-46. PubMed ID: 1569111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.
    Sipahi C; Ozen J; Ural AU; Dalkiz M; Beydemir B
    J Oral Rehabil; 2006 Sep; 33(9):666-73. PubMed ID: 16922740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.
    Saidpour SH
    Ann Biomed Eng; 2006 Jul; 34(7):1157-63. PubMed ID: 16732432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC; Davis EE
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface.
    Albert K; Schledjewski R; Harbaugh M; Bleser S; Jamison R; Friedrich K
    Biomed Mater Eng; 1994; 4(3):199-211. PubMed ID: 7950869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological evaluation of carbon-fibre-reinforced polybutyleneterephthalate (CFRPBT) employed in a novel acetabular cup.
    Brooks RA; Jones E; Storer A; Rushton N
    Biomaterials; 2004 Aug; 25(17):3429-38. PubMed ID: 15020116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24918250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contraction stress and bond strength to dentinfor compatible and incompatible combinations of bonding systems and chemical and light-cured core build-up resin composites.
    Bolhuis PB; de Gee AJ; Kleverlaan CJ; El Zohairy AA; Feilzer AJ
    Dent Mater; 2006 Mar; 22(3):223-33. PubMed ID: 16443265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Six years of in vitro/in vivo experience with Composipost.
    Dallari A; Rovatti L
    Compend Contin Educ Dent Suppl; 1996; (20):S57-63. PubMed ID: 12089763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro biocompatibility of polyetheretherketone and polysulfone composites.
    Wenz LM; Merritt K; Brown SA; Moet A; Steffee AD
    J Biomed Mater Res; 1990 Feb; 24(2):207-15. PubMed ID: 2329115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity of novel hybrid composite materials for making bone fracture plates.
    Bihari A; Gee A; Bougherara H; Brzozowski P; Lawendy AR; Schemitsch EH; Zdero R
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38688325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aramid-epoxy composite internal fixation plates: a pilot study.
    Cochran GV; Palmieri VR; Zickel RE
    Clin Biomech (Bristol, Avon); 1994 Sep; 9(5):315-22. PubMed ID: 23916301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: an experimental rabbit study.
    Nazzal A; Lozano-Calderón S; Jupiter JB; Rosenzweig JS; Randolph MA; Lee SG
    J Hand Surg Am; 2006 Sep; 31(7):1123-30. PubMed ID: 16945714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.