These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21262523)

  • 1. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors.
    Neculita CM; Yim GJ; Lee G; Ji SW; Jung JW; Park HS; Song H
    Chemosphere; 2011 Mar; 83(1):76-82. PubMed ID: 21262523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.
    Song H; Yim GJ; Ji SW; Neculita CM; Hwang T
    J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs.
    Neculita CM; Zagury GJ; Bussière B
    J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of cellulose waste versus organic waste as substrate in a sulfate reducing bioreactor.
    Choudhary RP; Sheoran AS
    Bioresour Technol; 2011 Mar; 102(6):4319-24. PubMed ID: 20926292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of layered and mixed passive treatment systems for acid mine drainage.
    Jeen SW; Mattson B
    Environ Technol; 2016 Nov; 37(22):2835-51. PubMed ID: 26998668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of sulfate reduction activity using granular sludge in anaerobic treatment of acid mine drainage.
    La HJ; Kim KH; Quan ZX; Cho YG; Lee ST
    Biotechnol Lett; 2003 Mar; 25(6):503-8. PubMed ID: 12882279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage.
    Muhammad SN; Kusin FM; Md Zahar MS; Mohamat Yusuff F; Halimoon N
    Environ Technol; 2017 Aug; 38(16):2003-2012. PubMed ID: 27745113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metals removal from mine runoff using compost bioreactors.
    Christian D; Wong E; Crawford RL; Cheng IF; Hess TF
    Environ Technol; 2010 Dec; 31(14):1533-46. PubMed ID: 21275250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.
    Mayes WM; Davis J; Silva V; Jarvis AP
    J Hazard Mater; 2011 Oct; 193():279-87. PubMed ID: 21864976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations.
    Tsukamoto TK; Killion HA; Miller GC
    Water Res; 2004 Mar; 38(6):1405-18. PubMed ID: 15016517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longevity of organic layers of vertical flow ponds for sulfate reduction in treating mine drainages in South Korea.
    Cheong YW; Hur W; Yim GJ; Ji SW; Yang JE; Baek HJ; Shim YS
    Environ Geochem Health; 2012 Jan; 34 Suppl 1():115-21. PubMed ID: 21814816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite.
    Hwang T; Neculita CM; Han JI
    J Environ Qual; 2012; 41(6):1857-64. PubMed ID: 23128742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.
    Gibert O; de Pablo J; Luis Cortina J; Ayora C
    Water Res; 2004 Nov; 38(19):4186-96. PubMed ID: 15491666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of fine organic mixtures for treatment of acid mine drainage in sulfidogenic reactors.
    Pérez N; Schwarz A; de Bruijn J
    Water Sci Technol; 2018 Nov; 78(8):1715-1725. PubMed ID: 30500795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.
    Johnson DB; Hallberg KB
    Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.