These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21262535)

  • 21. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering.
    Hardy JG; Torres-Rendon JG; Leal-Egaña A; Walther A; Schlaad H; Cölfen H; Scheibel TR
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.
    Brown JE; Moreau JE; Berman AM; McSherry HJ; Coburn JM; Schmidt DF; Kaplan DL
    Adv Healthc Mater; 2017 Jan; 6(2):. PubMed ID: 27863133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering.
    Spessot E; Passuello S; Shah LV; Maniglio D; Motta A
    Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects.
    Huiwen W; Shuai L; Jia X; Shihao D; Kun W; Runhuai Y; Haisheng Q; Jun L
    J Biol Eng; 2024 Mar; 18(1):22. PubMed ID: 38515148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentric-mineralized hybrid silk-based scaffolds for bone tissue engineering
    Bosio VE; Rybner C; Kaplan DL
    J Mater Chem B; 2023 Aug; 11(33):7998-8006. PubMed ID: 37526619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silk-Inorganic Nanoparticle Hybrid Hydrogel as an Injectable Bone Repairing Biomaterial.
    Sun L; Lu M; Chen L; Zhao B; Yao J; Shao Z; Chen X; Liu Y
    J Funct Biomater; 2023 Feb; 14(2):. PubMed ID: 36826885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Endochondral and Intramembranous Ossification Pathways on Bone Tissue Formation and Vascularization in Human Tissue-Engineered Grafts.
    Bernhard JC; Marolt Presen D; Li M; Monforte X; Ferguson J; Leinfellner G; Heimel P; Betti SL; Shu S; Teuschl-Woller AH; Tangl S; Redl H; Vunjak-Novakovic G
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative influence on cell behaviors of osteoblasts seeded onto demineralized bone matrix with diverse particle size.
    Yang L; Zhang H; Liu J; Zhang J; Zhen D; Deng B; Hu Y
    Cell Tissue Bank; 2023 Jun; 24(2):369-385. PubMed ID: 36222967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites.
    López Barreiro D; Martín-Moldes Z; Blanco Fernández A; Fitzpatrick V; Kaplan DL; Buehler MJ
    Nanoscale; 2022 Aug; 14(30):10929-10939. PubMed ID: 35852800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silk fibroins in multiscale dimensions for diverse applications.
    Dorishetty P; Dutta NK; Choudhury NR
    RSC Adv; 2020 Sep; 10(55):33227-33247. PubMed ID: 35515035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution.
    Bose S; Banerjee D; Vu AA
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):12964-12975. PubMed ID: 35263096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vitro Biological Evaluation of a Fabricated Polycaprolactone/Pomegranate Electrospun Scaffold for Bone Regeneration.
    Sadek KM; Mamdouh W; Habib SI; El Deftar M; Habib ANA
    ACS Omega; 2021 Dec; 6(50):34447-34459. PubMed ID: 34963930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors.
    Kochhar D; DeBari MK; Abbott RD
    Front Bioeng Biotechnol; 2021; 9():697981. PubMed ID: 34239865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration.
    Zhao ZH; Ma XL; Zhao B; Tian P; Ma JX; Kang JY; Zhang Y; Guo Y; Sun L
    Cell Prolif; 2021 Jul; 54(7):e13043. PubMed ID: 34008897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silk Fibroin as a Functional Biomaterial for Tissue Engineering.
    Sun W; Gregory DA; Tomeh MA; Zhao X
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration.
    Wu Z; Meng Z; Wu Q; Zeng D; Guo Z; Yao J; Bian Y; Gu Y; Cheng S; Peng L; Zhao Y
    J Tissue Eng; 2020; 11():2041731420967791. PubMed ID: 33294153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering.
    Yang Y; Feng Y; Qu R; Li Q; Rong D; Fan T; Yang Y; Sun B; Bi Z; Khan AU; Deng T; Dai J; Ouyang J
    Stem Cell Res Ther; 2020 Dec; 11(1):522. PubMed ID: 33272329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructured Biomaterials for Bone Regeneration.
    Lyons JG; Plantz MA; Hsu WK; Hsu EL; Minardi S
    Front Bioeng Biotechnol; 2020; 8():922. PubMed ID: 32974298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Polymeric Scaffolds in Bone Regeneration.
    Filippi M; Born G; Chaaban M; Scherberich A
    Front Bioeng Biotechnol; 2020; 8():474. PubMed ID: 32509754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomaterials for In Situ Tissue Regeneration: A Review.
    Abdulghani S; Mitchell GR
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31752393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.