These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21262963)
1. AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family. Hansen IA; Boudko DY; Shiao SH; Voronov DA; Meleshkevitch EA; Drake LL; Aguirre SE; Fox JM; Attardo GM; Raikhel AS J Biol Chem; 2011 Mar; 286(12):10803-13. PubMed ID: 21262963 [TBL] [Abstract][Full Text] [Related]
2. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Carpenter VK; Drake LL; Aguirre SE; Price DP; Rodriguez SD; Hansen IA J Insect Physiol; 2012 Apr; 58(4):513-22. PubMed ID: 22266018 [TBL] [Abstract][Full Text] [Related]
3. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti. Boudko DY; Tsujimoto H; Rodriguez SD; Meleshkevitch EA; Price DP; Drake LL; Hansen IA Nat Commun; 2015 Oct; 6():8546. PubMed ID: 26449545 [TBL] [Abstract][Full Text] [Related]
4. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti. Piermarini PM; Weihrauch D; Meyer H; Huss M; Beyenbach KW Am J Physiol Renal Physiol; 2009 Apr; 296(4):F730-50. PubMed ID: 19193723 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Drake LL; Rodriguez SD; Hansen IA Sci Rep; 2015 Jan; 5():7795. PubMed ID: 25589229 [TBL] [Abstract][Full Text] [Related]
6. Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Attardo GM; Hansen IA; Shiao SH; Raikhel AS J Exp Biol; 2006 Aug; 209(Pt 16):3071-8. PubMed ID: 16888056 [TBL] [Abstract][Full Text] [Related]
7. General control nonderepressible 1 interacts with cationic amino acid transporter 1 and affects Aedes aegypti fecundity. Pinch M; Muka T; Kandel Y; Lamsal M; Martinez N; Teixeira M; Boudko DY; Hansen IA Parasit Vectors; 2022 Oct; 15(1):383. PubMed ID: 36271393 [TBL] [Abstract][Full Text] [Related]
8. Nuclear receptors in the mosquito Aedes aegypti: annotation, hormonal regulation and expression profiling. Cruz J; Sieglaff DH; Arensburger P; Atkinson PW; Raikhel AS FEBS J; 2009 Mar; 276(5):1233-54. PubMed ID: 19183228 [TBL] [Abstract][Full Text] [Related]
9. Role of an apical K,Cl cotransporter in urine formation by renal tubules of the yellow fever mosquito (Aedes aegypti). Piermarini PM; Hine RM; Schepel M; Miyauchi J; Beyenbach KW Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1318-37. PubMed ID: 21813871 [TBL] [Abstract][Full Text] [Related]
10. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. Price DP; Nagarajan V; Churbanov A; Houde P; Milligan B; Drake LL; Gustafson JE; Hansen IA PLoS One; 2011; 6(7):e22573. PubMed ID: 21818341 [TBL] [Abstract][Full Text] [Related]
11. Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. Shiao SH; Hansen IA; Zhu J; Sieglaff DH; Raikhel AS J Insect Physiol; 2008 Jan; 54(1):231-9. PubMed ID: 17981294 [TBL] [Abstract][Full Text] [Related]
12. Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Isoe J; Collins J; Badgandi H; Day WA; Miesfeld RL Proc Natl Acad Sci U S A; 2011 Jun; 108(24):E211-7. PubMed ID: 21628559 [TBL] [Abstract][Full Text] [Related]
13. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles. Bryant B; Raikhel AS PLoS One; 2011; 6(11):e25502. PubMed ID: 22125592 [TBL] [Abstract][Full Text] [Related]
14. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Bryant B; Macdonald W; Raikhel AS Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22391-8. PubMed ID: 21115818 [TBL] [Abstract][Full Text] [Related]
15. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti. Piermarini PM; Rouhier MF; Schepel M; Kosse C; Beyenbach KW Insect Biochem Mol Biol; 2013 Jan; 43(1):75-90. PubMed ID: 23085358 [TBL] [Abstract][Full Text] [Related]
16. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. Castagna M; Shayakul C; Trotti D; Sacchi VF; Harvey WR; Hediger MA J Exp Biol; 1997 Jan; 200(Pt 2):269-86. PubMed ID: 9050235 [TBL] [Abstract][Full Text] [Related]
17. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti. Mane-Padros D; Cruz J; Cheng A; Raikhel AS PLoS One; 2012; 7(9):e45019. PubMed ID: 23049766 [TBL] [Abstract][Full Text] [Related]
19. Electrogenic L-histidine transport in neutral and basic amino acid transporter (NBAT)-expressing Xenopus laevis oocytes. Evidence for two functionally distinct transport mechanisms induced by NBAT expression. Ahmed A; Yao PC; Brant AM; Peter GJ; Harper AA J Biol Chem; 1997 Jan; 272(1):125-30. PubMed ID: 8995237 [TBL] [Abstract][Full Text] [Related]
20. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Kapitskaya MZ; Li C; Miura K; Segraves W; Raikhel AS Mol Cell Endocrinol; 2000 Feb; 160(1-2):25-37. PubMed ID: 10715536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]