BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21262965)

  • 1. The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum.
    Sun Q; Ju T; Cummings RD
    J Biol Chem; 2011 Apr; 286(13):11529-42. PubMed ID: 21262965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc.
    Aryal RP; Ju T; Cummings RD
    J Biol Chem; 2014 Apr; 289(17):11630-11641. PubMed ID: 24616093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation.
    Aryal RP; Ju T; Cummings RD
    J Biol Chem; 2012 May; 287(19):15317-29. PubMed ID: 22416136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase.
    Aryal RP; Ju T; Cummings RD
    J Biol Chem; 2010 Jan; 285(4):2456-62. PubMed ID: 19923218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc.
    Ju T; Aryal RP; Stowell CJ; Cummings RD
    J Cell Biol; 2008 Aug; 182(3):531-42. PubMed ID: 18695044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLC35A2 deficiency reduces protein levels of core 1 β-1,3-galactosyltransferase 1 (C1GalT1) and its chaperone Cosmc and affects their subcellular localization.
    Wiertelak W; Chabowska K; Szulc B; Zadorozhna Y; Olczak M; Maszczak-Seneczko D
    Biochim Biophys Acta Mol Cell Res; 2023 Jun; 1870(5):119462. PubMed ID: 36933771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional assays for the molecular chaperone cosmc.
    Ju T; Cummings RD
    Methods Enzymol; 2010; 479():107-22. PubMed ID: 20816162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a role of transmembrane protein p25 in localization of protein tyrosine phosphatase TC48 to the ER.
    Gupta V; Swarup G
    J Cell Sci; 2006 May; 119(Pt 9):1703-14. PubMed ID: 16595549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different mechanisms of recognition and ER retention by transmembrane transcription factors CREB-H and ATF6.
    Llarena M; Bailey D; Curtis H; O'Hare P
    Traffic; 2010 Jan; 11(1):48-69. PubMed ID: 19883396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transmembrane domain of the adenovirus E3/19K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules.
    Sester M; Ruszics Z; Mackley E; Burgert HG
    J Virol; 2013 Jun; 87(11):6104-17. PubMed ID: 23514889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SDF2-like protein 1 (SDF2L1) regulates the endoplasmic reticulum localization and chaperone activity of ERdj3 protein.
    Hanafusa K; Wada I; Hosokawa N
    J Biol Chem; 2019 Dec; 294(50):19335-19348. PubMed ID: 31624144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Di-arginine and FFAT-like motifs retain a subpopulation of PRA1 at ER-mitochondria membrane contact sites.
    Abu Irqeba A; Ogilvie JM
    PLoS One; 2020; 15(12):e0243075. PubMed ID: 33259547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Intracellular Traffic System by Overexpression of KDEL Receptor 1 in Antibody-Producing CHO Cells.
    Samy A; Kaneyoshi K; Omasa T
    Biotechnol J; 2020 Jun; 15(6):e1900352. PubMed ID: 32073237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic.
    Graves TK; Patel S; Dannies PS; Hinkle PM
    J Cell Sci; 2001 Oct; 114(Pt 20):3685-94. PubMed ID: 11707520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (Arg)3 within the N-terminal domain of glucosidase I contains ER targeting information but is not required absolutely for ER localization.
    Hardt B; Kalz-Fuller B; Aparicio R; Volker C; Bause E
    Glycobiology; 2003 Mar; 13(3):159-68. PubMed ID: 12626409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.
    Shen J; Chen X; Hendershot L; Prywes R
    Dev Cell; 2002 Jul; 3(1):99-111. PubMed ID: 12110171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains.
    Nufer O; Kappeler F; Guldbrandsen S; Hauri HP
    J Cell Sci; 2003 Nov; 116(Pt 21):4429-40. PubMed ID: 13130098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-translational function of Cosmc, core 1 synthase specific molecular chaperone, revealed by a cell-free translation system.
    Narimatsu Y; Kubota T; Furukawa S; Shimojima M; Iwasaki H; Tozawa Y; Tachibana K; Narimatsu H
    FEBS Lett; 2011 May; 585(9):1276-80. PubMed ID: 21496458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of ER export and Golgi retention of ST3Gal5 (GM3/GM4 synthase) and B4GalNAcT1 (GM2/GD2/GA2 synthase) by arginine/lysine-based motif adjacent to the transmembrane domain.
    Uemura S; Shishido F; Kashimura M; Inokuchi J
    Glycobiology; 2015 Dec; 25(12):1410-22. PubMed ID: 26362868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion of molecular chaperones from the endoplasmic reticulum and fragmentation of the Golgi apparatus associated with pathogenesis in Pelizaeus-Merzbacher disease.
    Numata Y; Morimura T; Nakamura S; Hirano E; Kure S; Goto YI; Inoue K
    J Biol Chem; 2013 Mar; 288(11):7451-7466. PubMed ID: 23344956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.