BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21263157)

  • 1. Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo.
    Isern J; He Z; Fraser ST; Nowotschin S; Ferrer-Vaquer A; Moore R; Hadjantonakis AK; Schulz V; Tuck D; Gallagher PG; Baron MH
    Blood; 2011 May; 117(18):4924-34. PubMed ID: 21263157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental niches for embryonic erythroid cells.
    Isern J; Fraser ST; He Z; Baron MH
    Blood Cells Mol Dis; 2010 Apr; 44(4):207-8. PubMed ID: 20181503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression.
    Fraser ST; Isern J; Baron MH
    Blood; 2007 Jan; 109(1):343-52. PubMed ID: 16940424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.
    Palis J; Robertson S; Kennedy M; Wall C; Keller G
    Development; 1999 Nov; 126(22):5073-84. PubMed ID: 10529424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf.
    Isern J; Fraser ST; He Z; Zhang H; Baron MH
    Blood; 2010 Nov; 116(19):3972-80. PubMed ID: 20720183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Analysis of Erythroid Progenitors by Colony-Forming Assays.
    Palis J; Koniski A
    Methods Mol Biol; 2018; 1698():117-132. PubMed ID: 29076087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) stimulates primitive and definitive erythropoiesis in mouse embryos expressing hGM-CSF receptors but not erythropoietin receptors.
    Hisakawa H; Sugiyama D; Nishijima I; Xu MJ; Wu H; Nakao K; Watanabe S; Katsuki M; Asano S; Arai K; Nakahata T; Tsuji K
    Blood; 2001 Dec; 98(13):3618-25. PubMed ID: 11739165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice.
    Vacaru AM; Isern J; Fraser ST; Baron MH
    Genesis; 2013 Nov; 51(11):751-62. PubMed ID: 23913596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo.
    Ema M; Yokomizo T; Wakamatsu A; Terunuma T; Yamamoto M; Takahashi S
    Blood; 2006 Dec; 108(13):4018-24. PubMed ID: 16926294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells.
    Sturgeon CM; Chicha L; Ditadi A; Zhou Q; McGrath KE; Palis J; Hammond SM; Wang S; Olson EN; Keller G
    Dev Cell; 2012 Jul; 23(1):45-57. PubMed ID: 22749417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fetal liver is a niche for maturation of primitive erythroid cells.
    Isern J; Fraser ST; He Z; Baron MH
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6662-7. PubMed ID: 18445648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kruppel-like factor 1 (KLF1), KLF2, and Myc control a regulatory network essential for embryonic erythropoiesis.
    Pang CJ; Lemsaddek W; Alhashem YN; Bondzi C; Redmond LC; Ah-Son N; Dumur CI; Archer KJ; Haar JL; Lloyd JA; Trudel M
    Mol Cell Biol; 2012 Jul; 32(13):2628-44. PubMed ID: 22566683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced expression of p21 in GPIIb-p21 transgenic mice induces abnormalities in the proliferation of erythroid and megakaryocyte progenitors and primitive hematopoietic cells.
    Albanese P; Chagraoui J; Charon M; Cocault L; Dusanter-Fourt I; Romeo PH; Uzan G
    Exp Hematol; 2002 Nov; 30(11):1263-72. PubMed ID: 12423679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concise Review: early embryonic erythropoiesis: not so primitive after all.
    Baron MH
    Stem Cells; 2013 May; 31(5):849-56. PubMed ID: 23361843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential.
    Keller G; Wall C; Fong AZ; Hawley TS; Hawley RG
    Blood; 1998 Aug; 92(3):877-87. PubMed ID: 9680355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferation and cell death of embryonic primitive erythrocytes.
    Kimura T; Sonoda Y; Iwai N; Satoh M; Yamaguchi-Tsukio M; Izui T; Suda M; Sasaki K; Nakano T
    Exp Hematol; 2000 Jun; 28(6):635-41. PubMed ID: 10880749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro development of primitive and definitive erythrocytes from different precursors.
    Nakano T; Kodama H; Honjo T
    Science; 1996 May; 272(5262):722-4. PubMed ID: 8614833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro expansion of human cord blood CD36+ erythroid progenitors: temporal changes in gene and protein expression.
    Scicchitano MS; McFarland DC; Tierney LA; Narayanan PK; Schwartz LW
    Exp Hematol; 2003 Sep; 31(9):760-9. PubMed ID: 12962721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation of murine embryonic erythropoiesis: a spatial analysis.
    Silver L; Palis J
    Blood; 1997 Feb; 89(4):1154-64. PubMed ID: 9028937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PU.1 supports proliferation of immature erythroid progenitors.
    Fisher RC; Slayton WB; Chien C; Guthrie SM; Bray C; Scott EW
    Leuk Res; 2004 Jan; 28(1):83-9. PubMed ID: 14630084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.