These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 21263178)
1. Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage. Mueller-Rath R; Gavénis K; Andereya S; Mumme T; Albrand M; Stoffel M; Weichert D; Schneider U Biomed Mater Eng; 2010; 20(6):317-28. PubMed ID: 21263178 [TBL] [Abstract][Full Text] [Related]
2. [Biomechanical tests of a new scaffold for the cultivation of chondrocytes]. Schmidt-Rohlfing B; Gavenis K; Erli HJ; Wiesemann U; Schneider U Z Orthop Ihre Grenzgeb; 2004; 142(3):350-7. PubMed ID: 15250010 [TBL] [Abstract][Full Text] [Related]
3. Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering. Steck E; Bertram H; Walther A; Brohm K; Mrozik B; Rathmann M; Merle C; Gelinsky M; Richter W Tissue Eng Part A; 2010 Dec; 16(12):3697-707. PubMed ID: 20673020 [TBL] [Abstract][Full Text] [Related]
4. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
5. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Francioli SE; Candrian C; Martin K; Heberer M; Martin I; Barbero A J Biomed Mater Res A; 2010 Dec; 95(3):924-31. PubMed ID: 20845491 [TBL] [Abstract][Full Text] [Related]
6. In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Mueller-Rath R; Gavénis K; Gravius S; Andereya S; Mumme T; Schneider U Biomed Mater Eng; 2007; 17(6):357-66. PubMed ID: 18032817 [TBL] [Abstract][Full Text] [Related]
7. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Galois L; Hutasse S; Cortial D; Rousseau CF; Grossin L; Ronziere MC; Herbage D; Freyria AM Biomaterials; 2006 Jan; 27(1):79-90. PubMed ID: 16026827 [TBL] [Abstract][Full Text] [Related]
8. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
9. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. Lee CR; Grodzinsky AJ; Hsu HP; Spector M J Orthop Res; 2003 Mar; 21(2):272-81. PubMed ID: 12568959 [TBL] [Abstract][Full Text] [Related]
10. Short-term human chondrocyte culturing on oriented collagen coated gelatine scaffolds for cartilage replacement. Zehbe R; Libera J; Gross U; Schubert H Biomed Mater Eng; 2005; 15(6):445-54. PubMed ID: 16308460 [TBL] [Abstract][Full Text] [Related]
11. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Wang CC; Yang KC; Lin KH; Liu HC; Lin FH Biomaterials; 2011 Oct; 32(29):7118-26. PubMed ID: 21724248 [TBL] [Abstract][Full Text] [Related]
12. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Dorotka R; Windberger U; Macfelda K; Bindreiter U; Toma C; Nehrer S Biomaterials; 2005 Jun; 26(17):3617-29. PubMed ID: 15621252 [TBL] [Abstract][Full Text] [Related]
13. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
14. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142 [TBL] [Abstract][Full Text] [Related]
15. Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels. Mi S; Chen B; Wright B; Connon CJ J Biomed Mater Res A; 2010 Nov; 95(2):447-53. PubMed ID: 20648540 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869 [TBL] [Abstract][Full Text] [Related]
17. [Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering]. Wu W; Mao T; Feng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):401-5. PubMed ID: 17546888 [TBL] [Abstract][Full Text] [Related]
18. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429 [TBL] [Abstract][Full Text] [Related]
19. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Svensson A; Nicklasson E; Harrah T; Panilaitis B; Kaplan DL; Brittberg M; Gatenholm P Biomaterials; 2005 Feb; 26(4):419-31. PubMed ID: 15275816 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Yamane S; Iwasaki N; Majima T; Funakoshi T; Masuko T; Harada K; Minami A; Monde K; Nishimura S Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]