These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Analysis of common antigen of flagella in Bacillus cereus and Bacillus thuringiensis. Murakami T; Hiraoka K; Mikami T; Matsumoto T; Katagiri S; Shinagawa K; Suzuki M FEMS Microbiol Lett; 1993 Mar; 107(2-3):179-83. PubMed ID: 8472901 [TBL] [Abstract][Full Text] [Related]
4. Analysis of a common antigenic epitope in Bacillus cereus flagellar fraction. Murakami T; Hiraoka K; Mikami T; Matsumoto T; Suzuki M Biol Pharm Bull; 1993 Jun; 16(6):616-8. PubMed ID: 7689894 [TBL] [Abstract][Full Text] [Related]
5. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food. Zhu L; He J; Cao X; Huang K; Luo Y; Xu W Sci Rep; 2016 Mar; 6():16092. PubMed ID: 26976753 [TBL] [Abstract][Full Text] [Related]
6. Development of a monoclonal antibody-based competitive inhibition enzyme-linked immunosorbent assay for detection of Bacillus piliformis isolate-specific antibodies in laboratory animals. Boivin GP; Hook RR; Riley LK Lab Anim Sci; 1994 Apr; 44(2):153-8. PubMed ID: 7518016 [TBL] [Abstract][Full Text] [Related]
7. Establishment of monoclonal antibodies specific for Bacillus subtilis DB9011. Asano Y; Akaishi E; Tajima K; Shinozawa T Biosci Biotechnol Biochem; 2000 Mar; 64(3):652-6. PubMed ID: 10803975 [TBL] [Abstract][Full Text] [Related]
8. Bacteria as solid phase in a concentration fluorescence immunoassay analysis of antibodies to surface antigens. Schwan WR; Waltenbaugh C; Duncan JL J Immunol Methods; 1990 Feb; 126(2):247-52. PubMed ID: 1968082 [TBL] [Abstract][Full Text] [Related]
9. Rapid identification of Bacillus cereus based on the detection of a 28.5-kilodalton cell surface antigen. Chen CH; Ding HC; Chang TC J Food Prot; 2001 Mar; 64(3):348-54. PubMed ID: 11252478 [TBL] [Abstract][Full Text] [Related]
10. Immunological relationships between Salmonella flagella and their potential application for salmonellae detection by immunoassay. Ibrahim GF; Fleet GH; Lyons MJ; Walker RA Med Microbiol Immunol; 1985; 174(2):87-99. PubMed ID: 2412095 [TBL] [Abstract][Full Text] [Related]
11. Production and characterization of monoclonal antibodies against vegetative cells of Bacillus cereus. Charni N; Perissol C; Le Petit J; Rugani N Appl Environ Microbiol; 2000 May; 66(5):2278-81. PubMed ID: 10788418 [TBL] [Abstract][Full Text] [Related]
12. Cross-reactivity of monoclonal antibodies to Escherichia coli J5 with heterologous gram-negative bacteria and extracted lipopolysaccharides. Aydintug MK; Inzana TJ; Letonja T; Davis WC; Corbeil LB J Infect Dis; 1989 Nov; 160(5):846-57. PubMed ID: 2681436 [TBL] [Abstract][Full Text] [Related]
13. Murine monoclonal antibodies against Escherichia coli O4 lipopolysaccharide and H5 flagellin. Rivera-Betancourt M; Keen JE J Clin Microbiol; 2001 Sep; 39(9):3409-13. PubMed ID: 11526192 [TBL] [Abstract][Full Text] [Related]
14. Antigenic diversity in flagellar epitopes among Bacillus piliformis isolates. Boivin GP; Hook RR; Riley LK J Med Microbiol; 1993 Mar; 38(3):177-82. PubMed ID: 7681111 [TBL] [Abstract][Full Text] [Related]
15. Characterization of antisera raised against Treponema denticola (ATCC 33521) whole cell, outer sheath, protoplasmic cylinder, and axial flagella. Wolf V; Lange R Zentralbl Bakteriol; 1994 Jan; 280(3):325-31. PubMed ID: 8167426 [TBL] [Abstract][Full Text] [Related]
16. Serotype-specific monoclonal antibodies against the H12 flagellar antigen of Escherichia coli. Whitfield C; Walker SG; Atkinson CF; Lam JS; MacDonald LA; Beveridge TJ; Orskov I; Orskov F J Gen Microbiol; 1988 Jul; 134(7):1747-53. PubMed ID: 2469773 [TBL] [Abstract][Full Text] [Related]
17. Prevalence of antibodies reactive to pathogenic and nonpathogenic bacteria in preimmune serum of New Zealand white rabbits. Lathrop AA; Huff K; Bhunia AK J Immunoassay Immunochem; 2006; 27(4):351-61. PubMed ID: 16981648 [TBL] [Abstract][Full Text] [Related]