These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21263505)

  • 1. Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion.
    Rakich PT; Wang Z; Davids P
    Opt Lett; 2011 Jan; 36(2):217-9. PubMed ID: 21263505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces.
    Rakich PT; Davids P; Wang Z
    Opt Express; 2010 Jul; 18(14):14439-53. PubMed ID: 20639929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab-initio design of nanophotonic waveguides for tunable, bidirectional optical forces.
    Favuzzi PA; Bardoux R; Asano T; Kawakami Y; Noda S
    Opt Express; 2012 Oct; 20(22):24488-95. PubMed ID: 23187212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced optical forces in 2D hybrid and plasmonic waveguides.
    Huang C; Zhu L
    Opt Lett; 2010 May; 35(10):1563-5. PubMed ID: 20479809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing optical forces in integrated photonic circuits.
    Li M; Pernice WH; Xiong C; Baehr-Jones T; Hochberg M; Tang HX
    Nature; 2008 Nov; 456(7221):480-4. PubMed ID: 19037311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides.
    Mendlovic D; Goldenberg E; Ruschin S; Dror J; Croitoru N
    Appl Opt; 1989 Feb; 28(4):708-12. PubMed ID: 20548546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spoof surface plasmon waveguide forces.
    Woolf D; Kats MA; Capasso F
    Opt Lett; 2014 Feb; 39(3):517-20. PubMed ID: 24487854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring repulsive optical forces in nanophotonic waveguides.
    Oskooi A; Favuzzi PA; Kawakami Y; Noda S
    Opt Lett; 2011 Dec; 36(23):4638-40. PubMed ID: 22139268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigorous analysis of Casimir and van der Waals forces on a silicon nano-optomechanical device actuated by optical forces.
    Rodrigues JR; Gusso A; Rosa FSS; Almeida VR
    Nanoscale; 2018 Feb; 10(8):3945-3952. PubMed ID: 29423463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion.
    Mitrofanov O; Harrington JA
    Opt Express; 2010 Feb; 18(3):1898-903. PubMed ID: 20174017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.
    Safavi-Naeini AH; Painter O
    Opt Express; 2010 Jul; 18(14):14926-43. PubMed ID: 20639979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Optical Forces Behavior in Nano-optomechanical Devices Immersed in Fluid Media.
    Rodrigues JR; Almeida VR
    Sci Rep; 2017 Oct; 7(1):14325. PubMed ID: 29085058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic forces on the dielectric layers of the planar optical Bragg acceleration structure.
    Mizrahi A; Schächter L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036504. PubMed ID: 17025757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain.
    Qiu W; Rakich PT; Shin H; Dong H; Soljačić M; Wang Z
    Opt Express; 2013 Dec; 21(25):31402-19. PubMed ID: 24514715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion-optimized optical single-mode glass fiber waveguides.
    Jürgensen K
    Appl Opt; 1975 Jan; 14(1):163-8. PubMed ID: 20134847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The forces from coupled surface plasmon polaritons in planar waveguides.
    Woolf D; Loncar M; Capasso F
    Opt Express; 2009 Oct; 17(22):19996-20011. PubMed ID: 19997224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells.
    Chettiar UK; Garcia RF; Maier SA; Engheta N
    Opt Express; 2012 Jul; 20(14):16104-12. PubMed ID: 22772301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant optical forces in planar dielectric photonic metamaterials.
    Zhang J; MacDonald KF; Zheludev NI
    Opt Lett; 2014 Aug; 39(16):4883-6. PubMed ID: 25121899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond.
    Liu Q; Bibbó L; Albin S; Wang Q; Lin M; Lu H; Ouyang Z
    Sci Rep; 2018 Jan; 8(1):88. PubMed ID: 29311601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure.
    Pannipitiya A; Rukhlenko ID; Premaratne M; Hattori HT; Agrawal GP
    Opt Express; 2010 Mar; 18(6):6191-204. PubMed ID: 20389642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.